FACULTY OF SCIENCE AND HUMANITIES

ACADEMIC CURRICULA

POSTGRADUATE DEGREE PROGRAMME

Master of Computer Application (Generative Artificial Intelligence) Two Years

M.C.A REGULATIONS 2020

Learning Outcomes Based Curriculum Framework (LOCF)

Choice Based Flexible Credit System

Academic Year 2024-2025 onwards

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Deemed to be University u/s 3 of UGC Act, 1956)

Kattankulathur, Chengalpattu District 603203, Tamil Nadu, India

Department of Computer Applications

1.	Department Vision Statement
Stmt - 1	Imparting quality education in Computer Applications and prepare young minds to serve community
Stmt - 2	Contributing effectively to produce globally competent quality professionals in the field of Computer Applications
Stmt - 3	Prioritizing adaptability and industry alignment for a unique learning experience

2. Department Mission Statement

<i>L</i> .	Department Mission Statement							
Stmt - 1	Impart student's essential knowledge and skills required for a successful career in Computer Applications							
Stmt - 2	Cultivate and foster a conducive environment for scholarly research							
Stmt - 3	tmt - 3 Inculcate in the students a sense of commitment to professional ethics, moral values with emphasis on team work and leadership qualities							
Stmt - 4	Instill the students with a clear awareness of environmental issues and their relevance to their profession							
Stmt - 5	Impress upon the students the impact of their work on the nation's economic and social progress							
*"Stmt"	stands for Statement							
3.	Program Education Objectives (PEO)							
	Offer the students those skill sets and domain knowledge based on needs of Computer Applications and dynamic business environment							
PEO - 2	Provide the students with the capabilities in the areas of analysis, design, development and testing							
PEO - 3	Kindle the minds of students to take up research and development in Computer Applications with missionary zeal							
PEO - 4	Encourage Entrepreneurial mindset to execute viable business ideas in the field of Computer Applications.							
PEO - 5	Prepare the students into balanced individuals who are keen to leave a mark by excelling in their profession							

4.	Program Specific Outcomes (PSO)
PSO - 1	Graduates will acquire a comprehensive knowledge and sound understanding of fundamentals of Computer Applications.
PSO - 2	Graduates will develop practical, analytical and programming skills.
PSO - 3	Graduates will be prepared to acquire a range of general skills, to solve problems, to evaluate information, to develop software tools, to communicate with society effectively and learn independently.

5.	5. Consistency of PEO's with Mission of the Department											
	Mission Stmt. – 1	Mission Stmt. – 2	Mission Stmt 3	Mission Stmt 4	Mission Stmt. – 5							
PEO - 1	Н	Н	М	Н	М							
PEO - 2	Н	М	Н	Н	Н							
PEO - 3	М	Н	М	Н	Н							
PEO - 4	Н	Н	Н	L	М							
PEO - 5	L	Н	М	Н	Н							

H – High Correlation, M – Medium Correlation, L – Low Correlation

6. (6. Consistency of PEO's with Program Learning Outcomes (PLO)														
		Program Learning Outcomes (PLO)													
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.
	Fundamental Knowledge	Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
PEO - 1	Н	Н	Н	Н	Н	М	-	L	-	М	L	L	-	-	М
PEO - 2	Н	Н	Н	Н	Н	М	М	L	-	М	L	М	-	-	М
PEO - 3	Н	Н	Н	Н	Н	М	Н	М	-	М	L	М	-	-	М
PEO - 4	Н	М	М	Н	Н	Н	L	L	-	М	Н	L	-	-	М
PEO - 5	М	М	Н	Н	М	Н	М	Н	-	Н	М	М	L	М	М

H – High Correlation, M – Medium Correlation, L – Low Correlation

Program Regulation

MCA Generative Artificial Intelligence follows Master of Computer Application Regulations - 2020

A. Program Eligibility

Minimum Eligibility for Admission: The minimum qualification for admission to M.C.A Generative Artificial Intelligence degree programme (Regular) shall be mentioned as recognized by SRMIST as follows:

i) Passed BCA / B.Sc. in Computer Science / B.Sc. in Information Technology / B.Sc in Computer Technology / Bachelor Degree in Computer Science Engineering or equivalent Degree from a University recognized / certified by UGC / SRMIST / AIU

OR

ii) Passed B.Sc. / B.Com. / B.A. from University recognized/certified by UGC / SRMIST / AIU with Mathematics at 10+2 Level or at Graduation Level.

iii) The Minimum Percentage of Marks / CGPA prescribed by SRMIST.

iv) Notwithstanding the above, actual Admissions will also be based on the rules and regulations of the UGC / AICTE / Competent authorities.

B. Minimum Learning Credit

Minimum Learning Credits for the award of Degree: The curriculum of any branch of the M.C.A programme is designed to have a minimum of **80 credits** for the award of the M.C.A Generative Artificial Intelligence degree.

C. Eligibility for the Award of the Degree

Award of Degree: A Student shall be declared to be eligible for the award of the M.C.A Generative Artificial Intelligence Degree provided if,

i) Registered and successfully completed the courses and projects as per the curriculum and obtaining an aggregate of **learning credits totaling 80**.

ii) The student has successfully completed the course requirements and has passed all the prescribed examinations in all the four semesters within a maximum period of **FOUR** years reckoned from the commencement of the first semester to which candidate was admitted.

iii) No disciplinary action is pending against the student.

1. Programme Structure – MCA Generative Artificial Intelligence (Total Credits:80)

	1. Professional Core Courses (C)						
	(7 Courses)						
G			Hour Wee				
Course Code	Course Title	L	т	Р	С		
PGI20C01J	Object Oriented Programming using Java	3	0	3	4		
PGI20C02J	Advanced Database Technology	3	0	3	4		
PGI20C03J	Fundamentals of Generative AI and Working with Open AI	3	0	3	4		
PGI20C04J	Python Programming for Data Science	3	0	3	4		
PGI20C05J	Deep Neural Networks	3	0	3	4		
PGI20C06T	Modern Optimization Techniques	4	0	0	4		
PGI20C07J	Object Oriented Analysis and Design	3	0	2	4		
Total Learning Credits							

3. Generic Elective Courses (G) (Any 1 Course)									
Course	Course		Hours/ Week						
Code	Title	L	Т	Р	Ŭ				
PGI20G01J	Blockchain Technology								
PGI20G02J	Cyber Security								
PGI20G03J	Mobile Communication Network								
PGI20G04J	Quantum Machine Learning								
PGI20G05J	Cognitive Analytics Tools and Techniques	3	0	2	4				
PGI20G06J	Building GPT Powered Business Applications								
PGI20G07J	Development of Health care Generative AI (Lab: Google Generative AI Studio)								
Total Learning Credits									

5. Project Work, Internship In Industry / Higher Technical Institutions(P)									
Course Course Week									
Code		L	Т	Р	C				
PGI20P01L	Internship	-	-	-	2				
PGI20P02L	Mini Project Work	0	0	12	6				
PGI20P03L	Project Work	0	0	24	12				
Total Learning Credits 20									

2. Discipline Elective Courses (D) (3 Courses)											
(5 Courses)											
Course Code	Course Title	Hou	s/W	eek	C						
coue	The second secon	L	Т	Р							
PGI20D01J	Foundations of Data Science										
PGI20D02J	Artificial Intelligence and Machine Learning										
PGI20D03J	Web Application Development	3	0	2	4						
PGI20D04J	Intelligent Internet of Things (IIoT)		Ū	2							
PGI20D05J	Computer Vision										
PGI20D06J	Natural Language Processing										
PGI20D07J	Data Engineering and Knowledge Representation			2							
PGI20D08J	Introduction to Robotics Automation		0								
PGI20D09J	Android Applications Development										
PGI20D10J	IOT Cloud Infrastructure and IOT Protocols	3			4						
PGI20D11J	Augmented Reality and Virtual Reality for Game development										
PGI20D12J	Working with Generative AI and Large Language Models										
PGI20D13J	Adaptive AI in Data Analytics and Predictive Modeling										
PGI20D14J	Artificial Intelligence and Machine Learning for Robotics										
PGI20D15J	Full Stack Development	3	0	2	4						
PGI20D16J	IoT Devices with Computer Vision Technologies	3	0	2	4						
PGI20D17J	Computer Vision in Smart Robotics										
PGI20D18J	Building Conversational AI for Human Resources										
	Total Learning Credits				12						

4. Skill Enhancement Courses(S) (2 Courses)										
Course Code	Course		rs/ W	С						
code	THE	L	Т	Р						
PGI20S01J	Prompt Engineering in Generative AI (Lab: Google Generative AI Studio)	2	0	2	3					
PGI20S02J	Advanced Techniques in Generative AI with Open AI Models (Lab: Google Generative AI Studio)	3	0	2	4					
	Total Learning Credits		•		7					

6.Ability Enhancement Courses (AE) (3 Courses)										
Course	Course		Week							
Code	Title	L	Т	Р						
PGI20AE1T	Career Advancement – I	3	0	0	3					
PGI20AE2T	Career Advancement – II	3	0	0	3					
PGI20AE3T	Career Advancement – III	3	0	0	3					
Total Learning Credits 9										

2. Discipline Elective Courses (D) – Groups

Semester	Group I Data Analytics	Group II Robotics	Group III Application Development	Group IV IoT	Group V Vision in AI	Group VI Conversional Computing
I	Foundations of Data Science	Artificial Intelligence and Machine Learning	Web Application Development	Intelligent Internet of Things (IIoT)	Introduction to Computer Vision	Natural Language Processing
Ш	Data Engineering and Knowledge Representation	Introduction to Robotics Automation	Android Applications Development	IOT Cloud Infrastructure and IOT Protocols	Augmented Reality and Virtual Reality for Game development	Working with Generative AI and Large Language Models
Ш	Adaptive AI in Data Analytics and Predictive Modeling	Artificial Intelligence and Machine Learning for Robotics	Full Stack Development	IoT Devices with Computer Vision Technologies	Computer Vision in Smart Robotics	Building Conversational AI for Human Resources

			Co	urse Structure	2			
Semester	Professional Core Courses (PCC)	Discipline Electives Courses (DEC)	Generic Electives Courses (GEC)	Skill Enhancement Courses (SEC)	Ability Enhancement Courses (AEC)	Project Work, Internship (P)		Total Hours
Sem I	PCC-1(4) PCC-2 (4) PCC-3(4)	DEC-1 (4)		SEC 1 (3)	AEC 1 (3)		22	30
Sem II	PCC-4 (4) PCC-5 (4) PCC-6 (4)	DEC-2 (4)		SEC 2 (4)	AEC 2 (3)		23	30
Sem III	PCC-7(4)	DEC-3(4)	GEC-(4)		AEC 3 (3)	P (2) P (6)	23	30
Sem IV						P (12)	12	30
Total Credits	28	12	4	7	9	20	80	120

7. Implementation Plan									
	Semester - I								
Course	Course Title	Н	ours/ W	eek	C				
Code	Course Thie	L	Т	Р	C				
PGI20C01J	Object Oriented Programming using Java	3	0	3	4				
PGI20C02J	Advanced Database Technology	3	0	3	4				
PGI20C03J	Fundamentals of Generative AI and Working with Open AI	3	0	3	4				
PGI20D01J	Foundations of Data Science								
PGI20D02J	Artificial Intelligence and Machine Learning								
PGI20D03J	Web Application Development	3	0	2	4				
PGI20D04J	Intelligent Internet of Things (IIoT)	5	0	2	4				
PGI20D05J	Computer Vision								
PGI20D06J	Natural Language Processing								
PGI20S01J	Prompt Engineering in Generative AI (Lab: Google Generative AI Studio)	2	0	2	3				
PGI20AE1T	Career Advancement – I	3	0	0	3				
Learning Credits									

	Semester - II						
Course	С	H	C				
Code	Course Title	L	Т	Р	C		
PGI20C04J	Python Programming for Data Science	3	0	3	4		
PGI20C05J	Deep Neural Networks	3	0	3	4		
PGI20C06T	Modern Optimization Techniques	4	0	0	4		
PGI20D07J	Data Engineering and Knowledge Representation						
PGI20D08J	Introduction to Robotics Automation						
PGI20D09J	Android Applications Development						
PGI20D10J	IOT Cloud Infrastructure and IOT Protocols	3	0	2	4		
PGI20D11J	Augmented Reality and Virtual Reality for Game development						
PGI20D12J	Working with Generative AI and Large Language Models						
PGI20S02J	Advanced Techniques in Generative AI with Open AI Models (Lab: Google Generative AI Studio)	3	0	2	4		
PGI20AE2T	Career Advancement – II	3	0	0	3		
	Learning Credits				23		
Total Learning Credits of First Year							

	Semester – III							
Course	C	H	ours/ W	eek	C			
Code	Course Title	L	Т	Р	C			
PGI20C07J	Object Oriented Analysis and Design	3	0	2	4			
PGI20D13J	Adaptive AI in Data Analytics and Predictive Modeling							
PGI20D14J	Artificial Intelligence and Machine Learning for Robotics							
PGI20D15J	Full Stack Development	3	0	2	4			
PGI20D16J	IoT Devices with Computer Vision Technologies		Ŭ	_				
PGI20D17J	Computer Vision in Smart Robotics							
PGI20D18J	Building Conversational AI for Human Resources							
PGI20P01L	Internship	-	-	-	2			
PGI20P02L	Mini Project Work	0	0	12	6			
PGI20G01J	Blockchain Technology							
PGI20G02J	Cyber Security							
PGI20G03J	Mobile Communication Network							
PGI20G04J	Quantum Machine Learning	3	0	2	4			
PGI20G05J	Cognitive Analytics Tools and Techniques							
PGI20G06J	Building GPT Powered Business Applications							
PGI20G07J	Development of Health Care Generative AI (Lab: Google Generative AI Studio)							
PGI20AE3T	Career Advancement – III	3	0	0	3			
Learning Credits								

	Semester – IV									
Course	rse Course Title Hours/ Week									
Course TitleCodeLTP										
PGI20P03L	Project Work	0	0	24	12					
	Learning Credits									
Total Learning Credits of Second Year										

	rogram Articulation Matrix				Pro	ore	mm	ne T	ear	ninc	, (),	itee	mes			
Course Code	Course Name	Fundamental	Application of	Link with Related	Procedural Knowledge	Skills in Specialization	Ability to Utilize	Skills in Modeling	Analyze, Interpret	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
PGI20C01J	Object Oriented Programming using Java	Μ	Н	Μ	Н	L	-	-	-	L	-	-	-	-	-	-
PGI20C02J	Advanced Database Technology	Μ	М	М	М	Μ	М	-	-	-	-	-	-	-	-	-
PGI20C03J	Fundamentals of Generative AI and working with Open AI	М	М	М	Н	М	М	М	М	-	М	-	-	М	-	-
PGI20C04J	Python Programming for Data Science	М	М	М	Н	М	М	М	М	-	М	-	-	-	-	-
PGI20C05J	Deep Neural Networks	L	Н	-	Н	Н	Н	-	-	-	-	-	-	-	-	-
PGI20C06T	Modern Optimization Techniques	М	М	М	-	М	-	М	-	Н	М	Н	М	М	М	М
PGI20C07J	Object Oriented Analysis and Design	L	Н	Н	Н	Н	М	-	М	М	L	-	Н	-	-	-
PGI20D01J	Foundations of Data Science	Н	Н	Н	Н	Н	-	-	-	-	Н	-	-	М	-	L
PGI20D02J	Artificial Intelligence and Machine Learning	Н	Н	М	Н	L	-	L	-	L	-	-	-	L	-	М
PGI20D03J	Web Application Development	L	Н	L	М	-	Н	-	-	-	-	-	-	М	-	М
PGI20D04J	Intelligent Internet of Things (IIoT)	Н	Н	Н	Н	Н	-	-	-	М	-	-	-	-	-	-
PGI20D05J	Computer Vision	Н	Н	M	Н	Н	Н	-	М	-	-	-	-	-	-	-
PGI20D06J	Natural Language Processing	L	Н	-	Н	Н	Н	-	-	-	Н	-	М	_	-	L
PGI20D07J	Data Engineering and Knowledge Representation	M	M	М	L	M	Н	-	М	-	Н	-	-	М	-	-
PGI20D08J	Introduction to Robotics Automation	M	Н	-	-	Н	-	М	Н	-	Н	М	-	-	Н	М
PGI20D09J	Android Applications Development	Н	Н	М	Н	L		-	-	L	-		-	-	-	Н
PGI20D10J	IOT Cloud Infrastructure and IOT Protocols	Н	Н	Н	Н	H	-	_	М	-	-	Н	-	-	-	M
PGI20D11J	Augmented Reality and Virtual Reality for Game development	M	Н	M	L	M	Н	M	-	-	М	-	-	-	-	-
PGI20D12J	Working with Generative AI and Large Language Models	M	Н	L	H	L	-	-	-	- M	L	-	H	-	-	-
PGI20D12J PGI20D13J			п Н	L H	п Н	L H	-		- M	M	L H	-	п -			
PGI20D13J PGI20D14J	Adaptive AI in Data Analytics and Predictive Modeling	M M	н	Н	Н	Н	-	-	M	M	Н	-	-	-	-	-
	Artificial Intelligence and Machine Learning for Robotics		п	п Н						M	п Н					-
PGI20D15J	Full Stack Development	M			L	M	-	-	-			-	-	-	-	-
PGI20D16J	IoT Devices with Computer Vision Technologies	M	H	H	H	Н	-	Η	M	M	H	-	-	-	-	-
	Computer Vision in Smart Robotics	H	Н	H	H	H	М	-	M	M	M	M	Η	M	L	Η
PGI20D18J	Building Conversational AI for Human Resources	L	М	М	L	М	-	-	M	М	М	Н	-	Н	М	-
PGI20G01J	Blockchain Technology	M	Н	Н	Н	Н	-	-	М	М	Н	-	-	-	-	-
PGI20G02J	Cyber Security	Μ	М	L	М	М	L	L	L	-	-	L	-	М	М	Μ
PGI20G03J	Mobile Communication Network	Μ	Η	Н	Н	Η	-	-	Μ	М	Η	-	-	-	-	-
PGI20G04J	Quantum Machine Learning	Η	Μ	Η	М	-	-	-	-	-	-	-	L	Η	Μ	-
	Cognitive Analytics Tools and Techniques	Μ	Η	Η	Η	Η	-	Μ	Μ	Μ	Η	-	Μ	-	-	-
PGI20G06J	Building GPT Powered Business Applications	Μ	Η	Η	Η	Η	Η	-	Μ	М	Н	-	Η	-	-	-
PGI20G07J	Development of Health Care Generative AI (Lab: Google Generative AI Studio)	М	Н	Н	Н	H	-	-	М	М	Н	-	-	-	-	-
PGI20S01J	Prompt Engineering in Generative AI (Lab: Google Generative AI Studio)	Η	М	М	-	Η	Η	-	-	-	Η	-	-	-	-	-
PGI20S02J	Advanced Techniques in Generative AI with Open AI Models (Lab: Google Generative AI Studio)	М	Н	Μ	L	Μ	-	М	Μ	-	-	М	-	-	-	-
PGI20P01L	Internship	M	H	M	Н	L	-	-	-	M	L	-	H	-	Н	Н
PGI20P02L	Mini Project Work	M	Н	M	Н	L	-	-	-	М	L	-	Н	-	-	-
PGI20P03L	Project Work	Μ	Η	М	Η	L	М	-	Η	-	Η	-	Н	М	-	Η
	Career Advancement – I	М	Н	М	Н	L	М	-	H	Н	Н	-	H	М	-	Н
PGI20AE2T	Career Advancement – II	Μ	Η	М	Η	-	М	-	Η	Η	Η	-	Η	М	-	Η
PGI20AE3T		Μ	Н	Μ	Н	L	Μ		Н	Н	Н		Н	Μ		Η

SEMESTER - I

Course Code	PGI20C01J	Course Name	Object Oriented	l Programming using Java	Course Category	С	Professional Core Course	L	Т	Р	С
		Iname						3	0	3	4
	~		~ • • •								

Pre-requisite Courses	Nil	Co-requisite	Nil	Progressive Courses	Nil
		Courses			
Course Offering	Computer Applications		Data Book /	Nil	
Department			Codes/Standards		

Course Learning Rationale (CLR):	The purpose of learning this course is to:	Learning Program Learn				earni	ng O	utco	mes (PLO)								
CLR-1 : To learn the fundamentals of object-oriented programming					1	2	3	4	5	6	7	8	9	10	11	12	13	14 15	
CLR-2: Learning to write object-	oriented programs in Java.						SS			i.									
CLR-3 : Developing skills in crea	ting graphical and database applications through Java.	a	_	_			line			dge									
CLR-4 : Build Resilient code usin	g Exception Handling mechanism		(%)	%	lge	ts	cip	a	_	vle		ta							
CLR-5 : Be able to apply object of problems.	riented or non-object-oriented techniques to solve bigger Real World Computing	ng (Bloom)	Proficiency (I Attainment (%) I Attainment (%) ental Knowledge ion of Concepts in Related Disciplines ral Knowledge Specialization 0 Utilize Knowledge Modeling Interpret Data five Skills Solving Skills ication Skills					l Behavior earning										
	1	lki.	offic	ain	IK	of C	Related	, no	ial	lizo	leli	rp		ing	ion	Skills		Bel	
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of Thinking	Expected Pro	Expected Att	Fundamental Knowledge	Application (Link with Re	Procedural Knowledge	Skills in Spec	Ability to Utilize	Skills in Modeling	Analyze, Interpret	Investigative	Problem Solving	Communication	Analytical Sk	ICT Skills	Professional Life Long Le	
CLO-1 : Demonstrate the basic presented scenario.	ogramming constructs of Java and OOP concepts to develop Java programs for a given	3	80	80 70 L H M L L L			-												
CLO-2: Apply the concepts of Po	and implement multithreaded applications	3	85	75	Н	Η	Η	Μ	L	-	-	-	L	-	-	-	-		
$ CLO-3: \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				-	-	-													
CLO-4 : Build CRUD and distributed applications in Java			85	80	Μ	Η	Μ	Η	L	-	-	-	L	-	-	-	-		
CLO-5 : Build web application using Server-side programming			85	75	Н	Η	Μ	Н	L	-	-	-	L	-	-	-	-		

Durati	on (hour)	18	18	18	18	18
	SLO-1	Introduction to Object-oriented Programming	Inheritance in Java	GUI in Java	Java database connectivity	Servlets
S-1	SLO-2	Classes, Instances, Methods	Multi-level and single inheritance, multiple inheritance of interfaces,	Applet Programming, Java applets- Life cycle of an applet	Different types of JDBC drivers	Overview of Servlet technology and its role in web development
S-2	SLO-1	Basic Pillars of Object-Oriented Programming (Abstraction, Encapsulation, Inheritance and Polymorphism, Dynamic Binding, Message Passing	Dynamic Method Dispatch	Adding images to an applet – Adding sound to an applet.	JDBC implementation	Servlet Life Cycle

	SLO-2	Static and non-static members, Final and abstract classes, Abstract methods	Abstract classes Interfaces	Passing parameters to an applet	Establishing connectivity and working with connection interface	Servlet Vs. CGI
	SLO-1	Introduction to Java Programming	Comparable and Comparator Interfaces in Java - Nested and Inner Classes	Interacting with HTML Pages	querying a database and processing the results	Servlet API Overview
S-3	SLO-2	Java Programming Language and its Features	Packages – Access Specifiers – importing packages	Applet Security Considerations	Types of statement objects (Statement, Prepared Statement and Callable Statement) Data Access Object (DAO)	Generic Servlet, HTTP Servlet
S-4-6	SLO-1 SLO - 2	Lab1: Discussing the real-world examples of OOP concepts and applications	Lab 4: Demonstrate Multi Level Inheritance Implement Dynamic Method Dispatch	Lab 7: Create an interactive applet that takes user input and performs some action based on it	Lab 10: Write a Java program to execute a simple SQL query to retrieve data from a table and display the results.	Lab 13: Write a servlet that demonstrates the usage of these key classes/interfaces for handling HTTP requests and responses.
	SLO-1	The Java Development Kit	Exception Handling Model	AWT Programming	Networking basics	ServletConfig
S-7	SLO-2	The Java Class Libraries.	User defined Exception, Built – in Exception	AWT Components: Frame, Panel, Label, Button, Text Field, Text Area, Checkbox, Checkbox Group, Choice, List	Sockets, port	ServletContest
S-8	SLO-1	The Scope and Lifetime of Variables, operators, Shorthand Assignments,	Multithreading-Thread creation	AWT Layout Manager	Proxy servers, Internet addressing	Reading user request Data
	SLO-2	Type conversion in Assignments, Using Cast.	Thread class - Runnable interface	AWT Menus and Menu Bar	networking classes and interfaces,	Session tracking in servlets
S-9	SLO-1	Enumerated types, Control flow- block scope,	Java File Handling (Overview of different Stream, Byte Stream, Character Stream	Exploring Font Handling in AWT applications	Implementing TCP/IP based Server and Client	Writing thread safe servlet
	SLO-2	Conditional statements, Loops, break and continue statements	Readers Class and Writers Class	Designing Frames and adding GUI Components	URL connections	Servlet and JDBC
S-10-	SLO-1	Lab 2: Implement a program to demonstrate the use of casting for converting data	Lab: 5 Write a Java program that demonstrates the use of try-catch blocks to handle	Lab 8:Develop a real-world AWT applications such as calculators, text editors, and	Lab 11: Write a Java program to establish a socket connection between a client	Lab 14: Develop a servlet that interacts with a database using JDBC to retrieve data from a table and display it in a web
12	SLO-2	types.	built-in exceptions	image viewers	and a server on different machines using Socket and Server Socket classes.	page.
S-13	SLO-1	Arrays, One Dimensional array, creating an array, Two- Dimensional array, passing arrays as parameters, Recursion.	File Class: File Input Stream – File Output Stream	Swing Components. The Swing library	RMI - Introduction	JSP – Java Server Pages
	SLO-2	Introducing Classes, Objects and Methods. Class Fundamentals, How Objects are Created?	Input Stream Reader and Output Stream Writer Class	Managing layout using Swing	Architecture of RMI	Life cycle of JSP

S-14	SLO-1	Constructor: Constructor Overloading, Method: Method Overloading	File Reader and Writer class	Layout manager types – border, grid and flow	Understanding the role of stubs and skeletons in RMI communication	Creating static content
	SLO-2	Garbage collection and finalize method,	File Writer – Buffered Reader class	Swing Vs. AWT	Generating stub and skeleton classes using rmic tool	Creating dynamic content,
	SLO-1	string and mutable string, String class, Important String Methods	Collection Classes- List Class (Abstract List), Array List class	Event handling	Java.rmi classes and interfaces	JSP scripting elements
8-15	SLO-2	String Buffer and String Tokenizer class in Java	Linked List Class, Enumeration Iterative Statement	Events, Event sources, Event classes, Event Listeners, Delegation event model,	Parameter passing in remote methods (marshalling and unmarshalling)	JSP directives
S-16- 18	SLO-1	Lab 3: Implement the concept of String Handling functions	Lab 6: Develop a program that converts the character encoding of a text file using	Lab 9: Handling Mouse and Key events, Adapter classes (Demonstrate)	Lab 12: Develop a Java RMI application with a clear separation of client and	Lab 15: Implement a JSP page that displays the current date and time dynamically using JSP script lets.
18	SLO-2		InputStreamReader and OutputStreamWriter.		server components.	

Learning	1. Herbert Schildt, Java Complete Reference Tata McGraw Hill, 11th	1. E. Balguruswami, Programming with Java, A Primer, ISBN-0070617139.				
Resources	edition	2. Dustine R Callway, Inside Servlets, ISBN-9788131715451.				
	3. Dietel, - Java How to program, 7th edition; Pearson Education, New Delhi.					
		4. Java Programming – A Practical Approach – C Xavier, Tata McGraw-Hill Edition.				

Learning Assessment													
Level	Bloom's Level of Thinking	Continuous Learning Assessment (50% weightage)									Final Examination (50% weightage)		
	_	CLA –	1 (10%)	CLA – 2	2 (10%)	CLA –	3 (20%)	CLA – 4 (10%)#				
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
	Understand												
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
	Analyze												
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Create												
	Total	100	100 %		100 %		100 %		100 %		100 %		

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, and Conf. Paper etc.

C	Designers	

Course Designers				
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts		
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2	Dr.S. Gopinathan, Professor and Head, Department of Computer	Mrs. K. Kanmani, Assistant Professor, SRMIST KTR		
Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Science, University of Madras, Guindy Campus, Chennai – 600			
	025			

-	Course	PGI20C02J	Course	Advanced Database Technology C Professiona		al C	ore (ore Courses				L	Т	Р	C	2								
	Code	1 0120 0020	Name	Auvanceu	Database reenhology		Categ	gory	Č		1	1010	99101			Coul	565			3	0	3	4	ļ.
	Pre-	requisite Courses	Nil		Co-requisite Courses	Nil					Progr	essiv	e Cou	irses	N	il								
Cot	urse Of	ffering Department	t	Computer Applications		Data Boo	k / Code	s/Sta	ndards	rds Nil														
Cot	urse Le	earning Rationale (CLR):	The purpose of learning	g this course is to,			Lear	ning					Prog	gram	Lear	ning (Outco	omes ((PLO)			
CL	R-1:	To understand the b Design	basic concep	ots and terminology related t	to DBMS and Relational Data	base	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CL	R-2:		SQL concep	ts to construct tables and wr	rite effective queries																			
CL	LR-3: To understand the PL/SQL for enhancing SQL functionality and managing transactions.											les			e									
CLR-4: To impart working methodology of Transaction Management, Concurrency Control and Recovery Management					Recovery	(Bloom)	(%)	(%)	dge	pts	sciplir	ae.	e	wledg		Data		S	s					
CLI	R-5 :	To gain knowledge	in Differen	t types of databases.				ency	nent	owle	Concepts	d Di	vledg	catio	Kno	50		lls	Skills	Skills	Ì		avio	ing
							Thinking	ofici	Attainment	al Kn	of C	elate	Knov	ciali	ilize	delin	Interpret	e Skills	Solving		Skills		Beh	earn
Cou	urse Le	earning Outcomes ((CLO):	At the end of this course, l	learners will be able to:		Level of Thi	tee	Expected At	Fundamental Knowledge	Application of	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Int	Investigative	Problem Sol	Communication	Analytical S	ICT Skills	Professional Behavior	Life Long Learning
CL	0-1:	Understand the fund	damental co	oncepts of database manager	ment systems (DBMS).		2	85	80	М	Н	Н	М	М	М	-	-	-	-	-	-	-	-	-
CL	0-2:	Gain proficiency in	Structured	Query Language			3	85	80	М	L	L	М	М	М	-	-	-	-	-	-	-	-	-
CL	0-3 :	Apply to PL/SQL (Procedural I	Language/Structured Query	Language)		3	85	80	М	М	М	М	М	М	-	-	-	-	-	-	-	-	-
CLO-4: Understand transaction management concepts				3	85	80	Μ	М	М	Н	М	М	-	-	-	-	-	-	-	-	-			
CLO-5 : Familiarize MongoDB Database				3	85	80	L	Μ	М	М	Н	Н	-	-	-	-	-	-	-	-	-			

Durat	ion (hour)	18	18	18	18	18
S-1	SLO-1	Introduction to Database systems – Architecture of DBMS	SQL: Introduction to SQL	PL/SQL Overview	Transaction Management	Introduction to Parallel Database
	SLO-2	Data Models	SQL Syntax, SQL Data Types	PL/SQL blocks	ACID Property	Parallel Database Architecture
	SLO-1	Structure of Relational Databases	SQL Operators	PL/SQL: Variables, Constants	Transaction States	Key Elements for Parallel Database
S-2	SLO-2	Database Schema - Schema Diagrams	SQL Expression	PL/SQL Data Types	Transaction Isolation	Query Parallelism
S-3	SLO-1	Relational Query Languages	Data Definition Language Commands	PL/SQL: Conditional Statements	Transaction Isolation Levels	Distributed System: Architecture of Distributed System

	SLO-2	Relationships And Relationship Sets	Data Manipulation Language Commands	PL/SQL: Case, Lop	Serializability	Distributed Database System Processing
S 4-6	SLO-1 SLO-2	Lab:1: Createa Database Schema for University Database	Lab 4: Implement DDL, DML	Lab 7: Implementing PL/SQL Conditional Statements, Looping Statements	Lab 10: Write functions/procedures to begin, commit, and rollback transactions.	Lab 13: Parallel Database
S-7	SLO-1	Keys	Transaction Control Language Commands	PL/SQL: Procedure	Concurrency Control: Types of locks	Introduction to Distributed Database System
5-7	SLO-2	Key Constraints: Primary Key Constraint:	Data Control Language Commands	PL/SQL: Function	Two phase locking Protocol	Distributed Database System Architecture
S-8	SLO-1	Unique Constraint	Aggregate Functions	PL/SQL: Cursor	Timestamp based Protocols.	Distributed Query Processing
3-0	SLO-2	Foreign Key Constraint	Set Operations	PL/SQL: Exception	Lock based Protocols	Spatial Database
	SLO-1	Database Design and ER Diagrams	SQL functions	PL/SQL: Trigger	Graph based Protocol	Object based Database
S-9	SLO-2	Entities, Attributes, And Entity Sets	SQL Clauses	PL/SQL Trigger Example	Tree based Protocol for Concurrency Control	Multimedia Database
S 10-12	SLO-1 SLO-2	Lab 2: Create ER Model University Database	Lab 5: Implement DCL, TCL	Lab 8: Write a program to implement PL/SQL functions	Lab 11: Develop test cases to demonstrate how timestamp-based protocols prevent conflicts and ensure serializability.	Lab14: CaseStudy : distributed Database
S-13	SLO-1	Normalization:	SQL Queries	File Organization:	Recovery Control	Introduction to MongoDB • MongoDB architecture
	SLO-2	Functional Dependency	SQL Subqueries	Indexing: Primary index – Secondary indices	Types of failure	Data modelling in MongoDB • Advantages of MongoDB over RDBMS
S-14	SLO-1	First, Second, Third Normal Forms	SQL Joins	B tree Index	Log based recovery -	JSON File format for storing documents
	SLO-2	Boyce Code Normal Form	SQL Views, SQL Indexes	B+ tree Index	Recovery based on deferred	Database Commands in Mongodb
	SLO-1	Multi-valued Dependencies and Fourth Normal Form	SQL Triggers	Hashing: Static indexing – Dynamic indexing	Recovery based on immediate Update	CRUD operation
S-15	SLO-2	Join Dependencies and Fifth Normal Form	SQL Procedures	Query Optimization: Algebraic query, Heuristic Query Optimization	Shadow paging.	Querying MongoDB
S 16-18	SLO-1		subdueries, Joins and Clauses	Lab 9: Study the structure and properties of B-tree index and its variants	Lab 12: Case Study: Analyze different types of failures such as transaction failures, system crashes, and disk failures.	Lab 15: Creating database employee in MongoDB

Learning	.1.A. Silberschatz, H. Korth, S. Sudarshan, Database system concepts, 5/e, McGraw Hill, 2008.	Kevin Loney (Fifth RePrint-2007), Oracle Database 10G: The Complete Reference, McGraw Hill,
Resources		New Delhi.

Learning As	ssessment		
Level		Continuous Learning Assessment (50% weightage)	Final Examination

	Bloom's Level									(50%	o weightage)
	of Thinking	CLA – 1 (10%)		CLA –	CLA – 2 (10%)		CLA – 3 (20%)		10%)#		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
	Understand										
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Analyze										
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Create										
	Total	100 % 100 % 10		100	0 % 100 %			100 %			

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.D.Helen, Assistant Professor, SRMIST KTR							

Т L Р С Course Course Fundamentals of Generative AI and Working with Course PGI20C03J С **Professional Core Courses** 3 0 3 4 Code Name **Open AI** Category **Pre-requisite Co-requisite** Progressive Nil Nil Nil Courses Courses Courses **Course Offering Department Computer Applications** Data Book / Codes/Standards Nil **Course Learning Rationale** The purpose of learning this course is to: **Program Learning Outcomes (PLO)** Learning (CLR): CLR-1: Understand Generative AI 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CLR-2: Introduction to Generative models CLR-3: Understanding OpenAI Technology Link with Related Disciplines Ability to Utilize Knowledge CLR-4: Generative Adversarial Networks Level of Thinking (Bloom) Expected Proficiency (%) Expected Attainment (%) **H** Fundamental Knowledge CLR-5: OpenAI tools Application of Concepts Analyze, Interpret Data **Procedural Knowledge Problem Solving Skills Skills in Specialization Communication Skills Professional Behavior** Long Learning **Investigative Skills Skills in Modeling** Analytical Skills **Course Learning Outcomes** ICT Skills At the end of this course, learners will be able to: (CLO): Life CLO-1: Understand the basic concepts of Generative AI 80 Н 3 70 Μ Н Μ Μ Μ -Μ L --_ -85 CLO-2: Design and implement VAE generative models. 3 75 Н Н Μ Μ Н -Μ Μ _ Μ Μ CLO-3: Apply and understand appropriate data modeling techniques 75 Μ 3 70 M M Н Μ Μ Н Μ Μ Μ _ CLO-4: Perform appropriate modeling techniques to implement text generation 3 85 80 M M Н Н М Н М Μ Μ _ CLO-5: Implement Image synthesis using OpenAI 3 85 75 M M M M H Н Μ М L Duration (hour) 15 15 15 15 15 Introduction to Generative AI: Introduction to Autoencoders: Introduction to GANs: Introduction to Text Generation: Introduction to DALL-E: DALL-E's Definition and scope of Definition and intuition behind Definition and motivation Explanation of different types of origin, developed by OpenAI, and its generative AI. SLOautoencoders. behind Generative Adversarial text generation tasks, such as pioneering role in AI-driven image Networks (GANs). language modeling, text 1 generation.

S-1					completion, and dialogue	
~ -					generation.	
		Significance of generative AI in	Applications of autoencoders in	Overview of Generative	Applications of text generation	Overview of the core principles behind
	SLO-	various industries.	dimensionality reduction and	Adversarial Networks (GANs).		DALL-E's ability to generate diverse and
	2		feature learning.			contextually relevant images based on
						textual input.
		Generative Models Overview:	Autoencoder Architecture	GANs Architecture:	Evolution of GPT Models:	DALL-E Architecture Overview:
		Explanation of autoencoders and	Explanation of the encoder and	generator and discriminator	Overview of the key advancements	DALL-E's architecture, transformer-based
S-2	SLO-	their applications.	decoder architecture in	networks' architectures.	and improvements from GPT-1 to	design and attention mechanisms.
5-2	1		autoencoders.		GPT-3, including model size,	
					training data, and performance	
					metrics.	

	SLO- 2	Introduction to Generative Adversarial Networks (GANs) and their architecture.	Discussion on different activation functions and layer configurations used in autoencoder architectures	Role of activation functions and normalization techniques in GAN architecture.	Impact of each GPT model	Transformer-based design and attention mechanisms.
S-3	SLO- 1	Types of Generative Models Understanding Variational Autoencoders (VAEs) and their probabilistic interpretation.	Training Autoencoders: Overview of the backpropagation algorithm for training autoencoders.	Training GANs: Overview of the minimax game framework used for training GANs.	GPT Architecture Overview: the transformer architecture and its components	Training Process of DALL-E: data collection, preprocessing, and model optimization.
SLO 2		Overview of Flow-based models and their advantages.	Understanding techniques for optimizing reconstruction loss, such as gradient descent and stochastic gradient descent.	Understanding the challenges of GAN training, such as mode collapse and convergence issues.	Self-attention mechanisms and feed-forward neural networks.	Understanding DALL-E's Capabilities
S-4,5,6	SLO- 1 SLO- 2	Lab1: Simple programs on Open API	Lab 4: on implementing a basic autoencoder using TensorFlow or PyTorch.	Lab 7: GAN model using TensorFlow or PyTorch.	Lab 10: Fine-tuning GPT for Text Generation.	Lab 13: generating images using DALL- E
S-7	SLO- 1	Generative Models Applications: Applications of generative models in image generation and manipulation.	VAEs: Explanation of the probabilistic nature of VAEs and the role of the latent space.	Training Dynamics: Exploration of the iterative process of generator and discriminator updates during GAN training.	Pretraining Objectives: autoregressive language modeling	Image Representation in DALL-E: interpretation and representation of textual descriptions
	SLO- 2	Utilization of generative models in natural language processing tasks such as text generation and translation.	Comparison between traditional autoencoders and VAEs in terms of generating new data samples.	Analysis of the Nash equilibrium and convergence properties in GAN training dynamics.	masked language modeling	latent space representation used by DALL- E
S-8	SLO- 1	Understanding OpenAI: History and evolution of OpenAI as a research organization.	Latent Space Representation: Exploration of the properties of the latent space and its dimensionality.	Loss Functions in GANs: Explanation of the adversarial loss and the role of the generator and discriminator loss functions.	Fine-tuning GPT Models: Techniques for fine-tuning pre- trained GPT models sentiment analysis, question answering, and text summarization.	Text-to-Image Generation with DALL-E: Overview of the text-to-image synthesis process techniques and strategies for optimizing the generation process and improving image quality.
	SLO- 2	OpenAI's collaborations and partnerships with industry and academia.	Techniques for visualizing and interpreting the latent representations learned by VAEs.	Introduction to additional loss functions like feature matching and gradient penalty in GAN training.	Hyperparameters and optimizing fine-tuning performance.	
S-9	SLO- 1	OpenAI's Technologies: Overview of GPT (Generative Pre-trained Transformer) models and their capabilities.	Loss Functions in VAEs: reconstruction loss and the KL divergence loss in VAEs.	Mode Collapse and Solutions: Definition and causes of mode collapse in GANs.	Transfer Learning with GPT: Overview of transfer learning approaches such as feature extraction and fine-tuning	Conditioning DALL-E for Image Synthesis: DALL-E's image generation process
	SLO- 2	Introduction to DALL-E and its applications in image generation.	trade-off between reconstruction fidelity and regularization in VAE training.	mode collapse, including minibatch discrimination and diversity regularization.	benefits and challenges of transfer learning with GPT	DALL-E's image synthesis using conditioning
S- 10,11,12	SLO- 1				Lab 11 conditioning GPT models for specific text generation tasks	Lab 14 conditioning DALL-E to generate images

	SLO- 2	Lab 2 :training a simple autoencoder model on a dataset.	Lab 5: implementing a variational autoencoder using TensorFlow or PyTorch.	Lab 8: implementing a DCGAN for image generation		
S-13	SLO- 1	Ethical Considerations in AI: Discussion on bias and fairness issues in generative AI.	Applications of Autoencoders and VAEs: Real-world examples of using autoencoders for image denoising and anomaly detection.	Progressive Growing GANs (PGGANs): Overview of the progressive growing strategy for training GANs on high-resolution images.	Text Generation Techniques: Exploration of techniques such as greedy decoding, beam search, and nucleus sampling used for text generation with GPT models.	Ethical Considerations in Image Synthesis: ethical considerations and potential risks
	SLO- 2	Consideration of privacy concerns in the generation of realistic synthetic data	Applications of VAEs in generating novel images and performing image-to-image translation tasks.	Understanding the benefits of progressive growing in generating realistic and diverse images.	Evaluation Metrics for Text Generation	Limitations and Challenges of DALL-E
	SLO- 1	Challenges related to interpretability and control in generative AI models.	Comparison with Other Models: Comparison of the training stability and sample quality between autoencoders, VAEs, and GANs.	Self-Attention GANs (SAGANs): Introduction to self-attention mechanisms and their integration into GAN architectures.	Ethical Considerations in Text Generation: Discussion on ethical concerns related to bias, fairness, and misinformation in text generation using GPT models.	Applications of DALL-E: design automation, content creation, and visual storytelling.
S-14	SLO-2	Limitations of current generative models in capturing complex data distributions	interpretability and controllability of generated samples in autoencoders versus GANs.	Wasserstein GAN (WGAN) and WGAN-GP	Real-world Applications of GPT: Case studies and examples demonstrating the use of GPT models in applications such as content generation, virtual assistants, and personalized recommendation systems.	Future Directions in DALL-E Research
S-15	SLO- 1	Future Trends Exploration of reinforcement learning-based generative models and their potential.	Ethical Considerations Workshop:Identification of potential biases in autoencoder models and their impact on downstream tasks.	Conditional GANs: class- conditional and image-to- image translation GANs.	Advanced GPT Architectures: Overview of advanced transformer- based architectures such as XLNet, T5, and BERT, and their unique features for text generation tasks.	Comparison with Other Image Synthesis Models: Comparative analysis of DALL-E GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders).
	SLO- 2	democratization of generative AI through accessible tools and frameworks	fairness, transparency, and accountability in the deployment of autoencoder-based systems.	Applications of conditional GANs	Comparison of different GPT variants based on architecture, training objectives, and performance metrics.	strengths, weaknesses, and unique capabilities of DALL-E
S- 16,17,18	SLO- 1 Lab 3 : Implementing a basic GAN architecture for generating synthetic images using a pre- trained model. Top of Form		Lab 6: VAEs for anomaly detection in datasets	Lab 9: implementing a Progressive Growing GAN	Lab 12: interpreting and analyzing the output of GPT models for text generation tasks.	Lab 15: Preprocessing and formatting datasets for training and fine-tuning DALL-E models.

	1.Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (Chapter 20: Generative Models).
Learning	2. "Hands-On Generative Adversarial Networks with PyTorch 1.x: Implement next-generation neural networks to build powerful GAN models using Python" by Stefano Van Der Walt, Benjamin
Resources	Kallus, and Alex Lavin
	3. "GANs in Action: Deep learning with Generative Adversarial Networks" by Jakub Langr and Vladimir Bok

Learning	Learning Assessment												
	Bloom's				Examination 6 weightage)								
Level	Level of Thinking	CLA – I	1 (10%)	CLA –	2 (10%)	CLA –	3 (20%)	CLA –	4 (10%)#				
	_	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
T	Remember	20%	200/	150/	150/	150/	150/	150/	150/	150/	150/		
Level 1	Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 2	Analyze	20%	2070	20%	20%	2070	2070	2070	2078	2076	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 5	Create	1070	1070	1370	1570	1570	1570	1570	1370	1370	1370		
	Total	100) %	100) %	100 %		10	0 %		100 %		

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	DrSrividhya B, Assistant Professor, SRMIST, KTR

Course Code	PGI20D01J	Course Name	Course Name Foundations of Data Science Course Category		gory	D Discipline Ele					lectiv	ve C	ours	se	L 3			C 4					
Pre-requisi	te Courses	Nil	Co-requisite Courses	Nil			Prog	ressiv	ve Cou	rses	Nil												
Course Offering		Computer Applica	•		/ Codes/Standards	Nil	0	0.551		1505	1 11												
Course Learning Rationale (CLR):The purpose of learning this course is to:							Le	earni	ng				Pr	ogra	m Le	earnir	ng Ot	utcor	nes (PLO)		
CLR-1: Underst	tand the basics of	Data Science	ata Science					2	3	1	2	3	4	5	6	7	8	9	10	11	12	13 1	4 15
CLR-2: Learnin	g and implement	ing the fundamentals	the fundamentals of Python for data science												lge								
CLR-3 : Exploring python libraries and data analysis methodologies like Exploratory Data Analysis							(Bloom)	(%)	(%)	ge	ts				vleč		g						
CLR-4: Learning basic and advanced concepts in Machine Learning and Deep Learning						Blo	y (ut (led	cepi		dge	ion	MOL		Dat		ills	Skills			5	
CLR-5: Underst	tanding Compute	r Vision and Data Vi	sualization				 	enc	mei	NOL	ono	p	wle	zat	Kı	<u>50</u>	et]	Skills	Sk	Sk			ing
Course Learning (CLO):	At the end of this course, learners will be able to:				Level of Thinking	Expected Proficiency	Expected Attainment (%)	Fundamental Knowledge	Application of Concepts	Link with Related	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative S	Problem Solving Skills	Communication	Analytical Skills	ICT Skills	Protessional Benavior Life Long Learning		
CLO-1: Learn th	he fundamentals	of Data Science and i	its methodologies				3	80	70	Н	-	Μ	-	-	-	-	-	-	Η	-	-	Μ	
		cience concepts usin	g python				3	85	75	Н	Η	Η	-	-	-	-	-	-	Η	-	-	-	- L
CLO-3: Executi		1.4					3	75	70	Н	Η	-	Η	Η	-	-	-	-	Н	-	-	-	
CLO-4 : Knowledge of Machine Learning and Deep Learning using python libraries					3	85	80	Η	Η	Η	-	-	-	-	-	-	М	-	-	Μ			
CLO-5 : Exploring the data using various OpenCV and Matplotlib						3	85	75	Н	-	Μ	М	Μ	-	-	-	-	Η	-	-			
Duration (hour)										15								15					
SLO-1	ata Science Defir	ed, Data Science	Modelling Data, Modelling	• Evaluation	Creating Numpy Arra	Array Slicing			py Ge	tting Ex	plora	tory	with I	Data		Тı	ovt P	roces	sino	In N	тк		

	(hour)	15	15	15	15	15
S-1	SLO-I	Data Science Defined, Data Science Overview	Modelling Data, Modelling Evaluation	Creating Numpy Array Slicing, Numpy Data Types	Getting Exploratory with Data Analysis	Text Processing In NLTK
5-1	SLO-2	Data Science Methodologies Overview	Data Science Essential Skill Matrix	Numpy Array Shape and Rechane	Initial Data Exploration with Simple Pandas Functions	Text Processing – Tokenizing, Text Processing – Stop Words
S-2		Data Science Pipeline	Introduction to Data Science Essential Skill Matrix, Mathematics and Statistical Skills	INIIMPV Data Joins Split Search	Univariate Analysis, Bivariate Analysis	Text Processing – Stemming, Text Processing – Part of Speech
5-2	SLO-2	Data Engineering, Data Preparation, Exploration	IESSential Programming Skills	(Scientific Computing with Python	Machine Learning with Scikit-Learn, Getting started with Machine Learning with Scikit-Learn	Text Processing – Lemmatizing
S-3	SLO-1	Data Science vs. Business Intelligence vs Artificial Intelligence	Data Engineering Skills	Getting Started with SciPy	Getting started with Scikit-Learn	Computer Vision with OpenCV
5-3		Data Science vs. Business Intelligence	Data Visualization Skills	SciPy Constants, SciPy Optimizers	Exploring the Famous Iris Dataset	Getting started with Computer Vision

S-4 to S-5	SLO- 1& 2	Lab 1: Perform Analysis on Simple Dataset I for Data Science and Business Intelligence Applications	Lab 4: Perform Analysis on Simple Data for Mathematical, Numerical, Data Engineering Processing	Lab 7: Apply Scientific functions on a given detect with SciPy	Lab 10: Install, Import Scikit Learn and Explore Iris Dataset with Pandas for ML Modelling	Lab 13: Install, Import OpenCV and Explore an Simple Image for Image Processing
S-6	SLO-1	Data Science vs. Artificial Intelligence, Types of Analysis	Business and Communication Skills SciPy Sparse Data Mac		Machine Learning Workflow	Getting started with Computer Vision library OpenCV
5-0	SI ()_2	Similarities Between Data Science and Business Intelligence	Ethical Skills		Simple Machine Learning Implementation with the Iris Dataset	NumPy and Image Basics
	SLO-1	Data Science alignment with Business Intelligence,	Python for Data Science	SciPy Spatial Data Overview	Deep Learning with Tensor Flow and Keras	Image Processing with OpenCV
S-7	SLO-2	Data Science Reinforcement with Business Intelligence, Data Science and Business Intelligence Together: Future	Introduction to Python, Expression and Variables, Python String Operations		Getting started with Deep Learning with Tensor Flow and Keras	Video Processing with OpenCV
S-8	SLO-1	Three Features for Data Science and Business Intelligence	Python Data Structures: List, Tuple, Dictionary, Sets. SciPy Interpolation		Getting started with Tensor Flow	Object Detection with OpenCV, Object Tracking with OpenCV
3-0	SLO-2	Getting Started with Data Science, Business Intelligence and AI Journey	Python Conditional Statements		Getting started with Keras , Deep Learning Framework	Data Visualization in Python using Matplotlib
S-9 to S-10	SLO- 1& 2	Lab 2: Perform Analysis on Simple Dataset II for Data Science and Business Intelligence Applications	Lab 5: Install Python and apply all basic python functions and Explore a Sample Dataset with		Lab 11: Install, Import Tensor flow and Keras. Create a Basic Neural Network with few layers.	Lab 14: Install, Import Matplotlib. Explore all the Data Visualization Graphs.
S-11	SLO-1	Data Science Methodologies, Introduction to Data Science Methodologies	Python Branching Statements, Python Case Statements		Deep Learning Workflow, Deep Learning Model Features	Getting started with Data Visualization
~	SLO-2	Business Understanding, Problem Statement Formulation	Loops, Functions and Exception Handling, Objects and Classes	Installing and Using Pandas, Exploring a data file Using Pandas	Deep Learning Model Performance	Getting started with Data Visualization Library Matplotlib
S-12	SLO-1	Analytic Understanding,	Mathematical Computing with Python (Numpy)	Reading Data from a Excel file, Reading Data from a .csv file	Simple Deep Learning Implementation with the Iris Dataset	Bar. Column, Pie Graph using matplolib, Box Plot using matplolib
5-12	SLO-2	Understanding Data Requirements	Getting Started with Numpy		Natural Language Processing with NLTK	Histogram using matplolib
S-13	SLO-1	Data Collection	Creating Numpy Arrays		Getting started with Natural Language Processing	Line plots and Sub Plots Using Matplotlib
5-13	SLO-2	Data Understanding	Creating Numpy Array Indexing	Getting Exploratory with Data Analysis	Getting started with NLP library NLK	Scatter Plot Using Matplotlib, Plot Customizations, Saving Plots
S-14	SLO-	Lab 3: Collect and understand a simple data for a Data Science	Lab 6: Install and perform a Numerical Array Processing using	Lab 9: Install and perform a simple Exploratory Data Analysis using	Lab 12: Install and perform a simple	Lab 15: Create all Data

Learning Resources	.1. https://deepsphereai.litmos.com/ 2. Kenneth A. Lambert, (2011), "The Fundamentals of Python: First Programs", Cengage Learning	 Jojo Moolayil, "Smarter Decisions : The Intersection of IoT and Data Science", PACKT, 2016. Cathy O'Neil and Rachel Schutt, "Doing Data Science", O'Reilly, 2015. David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big data Analytics", EMC 2013
-----------------------	--	--

Learning Assessment														
				Continu	ous Learning Ass	essment (50% w	eightage)			Final Exa	mination			
Level	Bloom's Level of Thinking	CLA –	l (10%)	CLA –	2 (10%)	CLA –	3 (20%)	CLA – 4	(10%)#	(50% weightage)				
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 1	Understand	20%	20%	13%	13%	13%	13%	13%	13%	13%	13%			
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 5	Create	10%	10%	13%	13%	13%	13%	13%	1,5%	13%	13%			
	Total	100 % 100 %		100) %	100) %	100 %						

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture	Dr.S. Gopinathan, Professor and Head, Department of Computer Science,	
Drive, #13-26 Vision Exchange, Singapore, 608526	University of Madras, Guindy Campus, Chennai – 600 025	Dr.R.SHANTHI, Assistant Professor, SRMIST KTR

Cours Code		Course Name	Artificial Intelligence and Machine Learning					ourse egory		D			Disc	iplin	e Ele	ctive	ive Courses				T	P	C
Cout		Name					Cat	cgor.	y											3	0	2	4
Pre-	requisite Courses	Nil		Co-requisite Courses	Nil	Nil					Progressive Courses												
Course Departi	Offering nent	Computer A	pplications		Data Boo Codes/St		rds				Nil												
Course Lo	earning Rationale (CLR)):	The purpose of le	earning this course is to,		Le	arni	ng		Program Learning Outcomes (PLO)													
CLR-1: To understand the basic concepts and principles of Artificial Intelligence						1	2	3	Γ	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15
CLR-2 :	To learn Basic code of Pa	rolog for AI							_						ge								
CLR-3 :	To study the concepts of	Supervised Mach	ine Learning Algorith	nms		(Bloom)	(%	(%)		ge	ts		0		vled	,							
CLR-4 :	Introduce the Boosting A	lgorithms				Blo	cy (nt (vlec	cep		Sdge	tion	nou	Dat		Skills	Skills			ior	50
CLR-5 :	Implement and apply sup Algorithms	pervised and unsur	pervised machine lear	ing		Thinking (ficien	Attainment (%)		I Knov	of Con	lated	inowle	Specialization	lize K	rpret	Skills	'ing Sl	ion Sk	ills		Behav	Learning
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:						Level of Thir	Expected Proficiency (%)	Expected Att		Fundamental Knowledge	Application of Concepts	Link with Related	Procedural Knowledge	Skills in Spec	Ability to Utilize Knowledge	Analyze, Interpret Data	Investigative Skills	Problem Solving	Communication	Analytical Skills	ICT Skills	Professional Behavior	Life Long Le
CLO-1 :	Delineate Artificial In	telligence and M	lachine Learning			3	80	70		L	Μ	-	-	Μ	-]	<u> </u>	-	Μ	Μ	-	-	-	-
CLO-2 :	Practical Understandin	ng about Prolog				3	85	75		М	М	-	-	М	- N	ИM	[-	Η	-	-	-	Η	-
CLO-3 :	CLO-3 : Recognize the characteristics of machine learning strategies				3	75	70		М	Η	-	-	Η	- N	ИH	-	Η	-	-	-	Η	М	
CLO-4 :	CLO-4 : Apply various supervised learning methods to appropriate problems					3	85	80		М	Η	-	-	Η	- 1	ИΗ	-	М	-	-	-	Η	Μ
CLO-5 :	CLO-5 : Identify and integrate more than one Machine Learning Algorithms to enhance the performance				3	85	75		Η	Н	-	-	Η	- I	- I	-	Η	-	-	-	Η	Н	
								1															

_	ıration hour)	15	15	15	15	15	
S-1	SLO-1	Definition and Scope of AI	Uninformed Search: Breadth First Search	What is Machine Learning and Why should we care about it?	Models for Classifications	Dimensionality Reduction and Evolutionary Models	
	SLO-2	Historical Evolution of AI	Depth First Search, Depth Limited Search	Applications of Machine Learning	Logistic Regression	Linear Discriminant Analysis	
S-2	SLO-1 The Turing Test, The Cognitive modeling approach		Iterative Deepening Depth First Search, Bidirectional Search	Where ML is used in the Data Science Process	Decision Tree Learning	Principal Component Analysis	
	SLO-2	Intelligent Agents and its TypesComparison of Uninformed search Strategies		Python Tools Used in ML	Random Forest, K-NN	Factor Analysis	

	SLO-1	problem solving agents	Informed Search: Generate & test, Hill Climbing	Components of Machine Learning Models	Ensemble Learning	Independent Component Analysis
S-3	SLO-2	Knowledge based systems	A* and AO* Algorithm, Constraint satisfaction	Learning Models, Geometric Models	Bagging: Random Forest Trees	Locally Linear Embedding, Isomap
S 04	SLO-1	Lab 1: Solving Problems	Lab 4: Working on	Lab 7: Supervised Learning	Lab10: Ensemble Learning	Lab 13: Working with
- S 05	SLO-2	using AI	Uninformed Search	Lus // Supervised Learning	Luorov Ensemble Learning	Dimensionality Reduction Models
S-6	SLO-1	Wumpus world	Greedy Best-First Search	Probabilistic Model, Logic Models	Boosting: Adaboost	Evolutionary Learning, Genetic algorithms
3-0	SLO-2	Propositional Logic: Representation, Inference Iterative Deepening A		Grouping and Grading	Gradient Boosting	Genetic Operators
S-7	SLO-1 Reasoning Patterns, Resolution		Beam Searching	Types of Learning	Reinforcement Learning	Particle Swarm Optimization-PSO
5-7	SLO-2	Forward and Backward ChainingGame playing: Minimax Search		Supervised, Unsupervised and Reinforcement Learning	Introduction, Learning Task	Ant Colony Optimization-ACO
C 0	SLO-1	Syntax of First order Logic Representation	Alpha-Beta Cutoffs, Waiting for Quiescence	Linear Models for Regression	Q Learning	Advanced Learning Models: Sampling
S-8	SLO-2	Semantics of First order Logic Representation	Examples	Logistic Regression, SVM, LDA	Non deterministic Rewards and actions	Basic Sampling Methods: Markov Chain Monte Carlo Methods
S 9 - S 10	SLO-1 SLO-2	Lab2: Propositional Logic and Reasoning	Lab5: Working on Informed Search	Lab8: Bayesian Learning	Lab11: Reinforcement Learning	Lab 14: Working with Advanced Learning Models
0.44	SLO-1	Architecture of expert systems	PROLOG: Representation	Bayesian Learning- Naïve Bayes	Temporal-difference learning	Gibbs Sampling
S-11	SLO-2	Role of expert systems	Structure, Backtracking	Linear Models for Clustering	Active reinforcement learning	Graphical Models
G 13	SLO-1	Types of Expert system: Rule Based, Frame Based	Unification	K-Means, Hierarchical Clustering	Generalization in reinforcement learning	Evaluation Metrics: Classification Metrics
S-12	SLO-2	Case Based, Fuzzy Logic Systems, Hybrid Systems	Input / Output in Prolog	Agglomerative Clustering	Deep Q-Network	Clustering Metrics
	SLO-1	Knowledge Acquisition	Control Structures and Recursion in Prolog	Gaussian Mixture Models	Actor-Critic	Regression Metrics
S13	SLO-2	Meta knowledge, Heuristics	Debugging and Error Handling in Prolog	Spectral Clustering	A3C, SAC	ROC Curves
S 14	SLO-1	SLO-1 Lab3: Experts System in Lab 6: Working with Lab9: Linear Models for Lab 12: Working with Deep-		Lab 12: Working with Deep-	Lab15: Evaluating the	
- S 15	SLO-2	Prolog	Prolog	Clustering	Q Network	performance metrics of the models

		1.	IvanBratko, "PrologProgrammingForArtificialIntelligence", 2ndEdition
	1.StuartRussell&PeterNorvig:"ArtificialIntelligence:AModernApproach",		Addison Wesley.
	Pearson Education, 2ndEdition	2.	EthemAlpaydin, Introduction to Machine Learning, MIT Press, Third Edition,
Learning	2. Stephen Marsland, —Machine Learning – An Algorithmic Perspectivel,		2014.
Resources	Second Edition, Chapman and Hall/CRC Machine Learning and Pattern	3.	Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT
	Recognition Series, 2014	Press, 2	012

Learning A	ssessment												
	Bloom's			Continu	ious Learning A	ssessment (50%	weightage)				Final Examination		
	Level of	CLA – 1 (10%)		CLA – 2 (1	CLA – 2 (10%)		CLA – 3 (20%)		4 (10%)#	(50% weightage)			
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
	Understand												
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
	Analyze												
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Create	1											
	Total	100 %	-	100 %	•	100 %	•	100 %	•	-	•		

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers											
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts									
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.A.Thilaka, Assistant Professor, SRMIST KTR									

Course	Code	PGI20D03J	Course Nan	e Web Application Development		Cou	irse	Catego	ory	Ľ)	Disc	iplir	ne El	ectiv	e Co	urse		L 7		P C 2 4
Pre-	requisite	Courses N	fil	Co-requisite Courses Nil	Р	ogre	essive	Course	es	Nil											
Course Of	ffering De	epartment C	Computer Applicat	ons Data Book / Codes/Standards	Nil																
Course Le (CLR):	earning R	ationale	he purpose of lear	ning this course is to,	Ι	.earı	ning				I	rogra	am L	earn	ing (Outcor	nes (PLO))		
CLR-1 :	Underst	and the current te	chnologies in Intern	et world	1	2	3	1	2	3	4	5	6	7	8 9	9 10) 11	12	13	14	15
CLR-2 :	Implem	ent client side pro	ogramming using C	S																	
CLR-3 :	Knowle	dge with Basics of	of HTML and XML	Structure	(Bloom)	y (%)	ıt (%)	ledge	epts		lge	on			Data	alls	lls			or	
CLR-4:	Learn ar	nd implement jav	a server-side progra	mming like PHP		Suc	nen	MO) in the second se	-	rlee	ati				SK P	Skills			avi	ng
CLR-5 :				echnologies like AJAX	Thinking	Expected Proficiency	Expected Attainment (%)	Fundamental Knowledge	Application of Concepts	with Related	Procedural Knowledge	Skills in Specialization	to Utilize	Skills in Modeling	Maryze, muerpret	Problem Solving Skills	Communication (al Skills	lls	Professional Behavior	life Long Learning
Course Le (CLO):	earning O	outcomes	At the end of this	ourse, learners will be able to:	Level of	Expecte	Expecte	Fundan	Applica	Link wi	Procedu	Skills in	Ability 1	Skills in	Allalyze,	Problem	Commu	Analytical	ICT Skills	Professi	Life Lor
CLO-1 :	Use the	various HTML ta	ags with appropriate	styles to display the various types of contents effectively	2	85	80	L		-	M		H	-	-		-	-	L	-	-
CLO-2 :	Develop pages ef		b pages using HTM	, CSS and JavaScript applying web design principles to make	3	85	80	Μ	H	-	М	-	-	-	-		-	-	М	-	М
CLO-3 :	Design t	the client-side sci	ripts using various f	atures for creating customized web services	3	85	80	L	Η	-	Μ		М	-			-	-	-	-	Μ
CLO-4 :	Develor	the server-side l	PHP scripts using va	rious features for creating customized web services	3		80	Μ	H	Μ	L	-	-	-			-	-	М	-	-
CLO-5 :	Create t	he server side scr		eb-based services with database connectivity and develop a web		85	80	L		L	М	-	-	-	-		-	-	М	-	-

	ration our)	15	15	15	15	
	SLO-1	Introduction to Website Basics	Introduction to Cascading Style Sheets (CSS)	Introduction to XML	Introduction to PHP	Introduction To AJAX and WEB SERVICES
S-1	SLO-2 Understanding the internet: Client- server model, DNS, HTTP/HTTPS protocols		Element selectors, class selectors, ID selectors	documents		History and evolution of AJAX in web development
S-2	2 SLO-1 Introduction to web browsers and their functionalities		Styling text: Fonts, colors, text properties	Document Type Definitions (DTD)	5	Understanding the XMLHttpRequest object in JavaScript

		Overview of web development tools: Text editors, browsers, developer tools	Box model: Margin, padding, border, width, height	XML Schema Definition (XSD)	Variables in PHP: naming	Making asynchronous requests to the server, Handling response data from the server
S-3	SLO-1	Introduction to HTML5	Working with backgrounds and gradients	Validating XML documents against DTD and XSD	Working with strings, numbers, arrays, and boolean values in PHP	AJAX with JSON-Introduction to JSON (JavaScript Object Notation)
5-5	SLO-2	History and evolution of HTML	CSS3 selectors: Pseudo-classes, pseudo-elements, attribute selectors	Introduction to XPath for navigating XML documents	Conditional statements: if, else, elseif	Sending and receiving JSON data with AJAX
8-4 8-5			Lab 4: Create a simple HTML page and apply CSS styles to elements like headings, paragraphs, and links. Experiment with properties such as color, font-family, font-size, text- align, and text-decoration.	pply CSS styles to elements eadings, paragraphs, and links. iment with properties such as font-family, font-size, text-		Lab 13: Create a form with input fields. Use AJAX to send form data to a server for processing and display the response without refreshing the page.
	SLO-1		Introduction to Flexbox: Flex container, flex items, alignment properties	Basics of XQuery for querying XML data		Implementing AJAX with callbacks, promises, and async/await
S-6	SLO-2	paragraphs, lists, and emphasis tags	Introduction to CSS Grid: Grid container, grid items, grid lines, grid tracks	XSL (eXtensible Stylesheet Language)	Functions and Includes	Error handling in AJAX requests
S-7		Working with links: <a> tag, internal and external links, anchor elements	CSS3 transitions and animations: Transition properties, keyframes, animation properties	XSLT (XSL Transformations) for XML to XML transformations	Defining and calling functions in PHP	Best practices for writing maintainable AJAX code
5-7		Images and multimedia: , <audio>, <video> tags</video></audio>	Responsive Web Design and Media Queries		8 8	Overview of web APIs and their importance
S-8			Introduction to responsive web design principles	DOM (Document Object Model) parsing	PHP Forms and User Input	Consuming RESTful APIs with AJAX
5-0	SLO-2	Advanced form elements: <select>, <option>, <input/> types (date, email, number, etc.)</option></select>	Media queries: Syntax, breakpoints, viewport meta tag	SAX (Simple API for XML) parsing	Processing HTML forms with PHP	Authentication and authorization when accessing APIs
S-9 S-		different attributes like <thead>,</thead>		Lab 8: create an XML document representing a collection of products with elements like name, price, category, and quantity.	Lab 11: Implement a PHP script to check if a number is even or odd using if-else statement.	Lab 14: Build a webpage that retrieves user information from the GitHub API using AJAX. Display user details such as name, profile picture, and repositories.
8-9 S- 10	SLO-2	Experiment with different types of lists (, , <dl>) and link styles (<a>).</dl>	techniques like floats, flexbox, and CSS Grid to arrange elements on the	elements like name, age, and grade,	Write a PHP program to print the multiplication table of a given number using a for loop.	Develop a currency converter application that fetches exchange rates from a currency exchange API using AJAX. Allow users to convert between different currencies dynamically.

	SLO-1	Semantic elements: <header>, <footer>, <nav>, <article>, <section></section></article></nav></footer></header>	Creating responsive layouts with CSS3 techniques	Introduction to XHTML	Retrieving user input from form fields	Introduction to Web Services
S-11	SLO-2	HTML5 structural elements: <aside>, <figure>, <fig caption="">, <main></main></fig></figure></aside>	Applying HTML5 and CSS3 knowledge to create a complete website project	XHTML syntax and document structure	Validating and sanitizing user input in PHP scripts	Overview of SOAP (Simple Object Access Protocol) and REST (Representational State Transfer) Differences between SOAP and RESTful web services
	SLO-1	eb Storage API: Local Storage and sistion Storage for client-side data prage CSS Architecture BEM (Block Element Modifier) methodology XHTML attributes and their values W		Working with Files and Directories	RESTful Web Services Principles of RESTful architecture	
S12		Geo location API: Obtaining user location, handling location-based content	Atomic CSS, SMACSS (Scalable and Modular Architecture for CSS)	Using semantic elements in XHTML (e.g., <header>, <nav>, <article>, <footer>)</footer></article></nav></header>	Reading from and writing to files in PHP	Creating RESTful APIs with HTTP methods (GET, POST, PUT, DELETE) Designing resource URIs and handling CRUD operations
	SLU -	Drag and Drop API: Creating drag- and-drop interfaces for web applications	CSS preprocessors and post-processors	Creating forms in XHTML	File handling functions: fopen, fclose, fwrite, etc.	SOAP Web Services Understanding SOAP protocol and messaging structure
S13	SLO -	Introduction to SVG (Scalable Vector Graphics): Basics of SVG syntax, embedding SVG in HTML	CSS linting tools	Linking CSS to XHTML documents Styling XHTML elements using CSS selectors and properties	Manipulating directories and file paths in PHP	Implementing SOAP-based web services with WSDL (Web Services Description Language) Consuming SOAP web services in web applications
S-14 S-15	SLO-1	Lab 3: Design a form using HTML elements like <form>, <input/>, <select>, <textarea>, and <button>.</td><td>Lab 9: Write a XQuery to transform
an XML document representing a
list of movies into a new XML
document containing only the movie
titles and their corresponding
release years.</td><td>Lab 12: Implement PHP includes to
separate header, footer, and
navigation sections in a webpage.</td><td>Lab 15: Design and implement a
simple RESTful API for managing a
list of products. Include endpoints
for CRUD operations (Create, Read,
Update, Delete) using AJAX to
interact with the API.</td></tr><tr><td>5-15</td><td>SLO-2</td><td colspan=2>O-2 Create a form with input fields that require specific formats or validations (e.g., email address, phone number).</td><td>Develop an XML document
representing a customer profile with
elements such as name, email,
address, and phone number.</td><td>Create a PHP form to accept user
input for basic information (name,
email, age) and display the entered
data</td><td>Extend the RESTful API to include
user authentication using JWT
(JSON Web Tokens). Implement
AJAX-based login and registration
functionality on a web page.</td></tr></tbody></table></textarea></select></form>				

		Text Book: Getting MEAN with Mongo, Express Angular and Node, Simon Holmes	Reference Book:
L	earning	Practical Node JS: Building a Real World Scale Web Apps, Basarat Syed, A Press, 2014.	1. MEAN Web Development, AMOS Q. HAVIV
R	esources	Learning Angular JS: A Guide to Angular JS Development, Ken Williamson, O' Reilly, 2015	2. AngularJS: <u>https://angular.io/docs</u>
			3. MongoDB: <u>https://docs.mongodb.com/manual/tutorial/getting-started/</u>

Learning A	Assessment											
				Final Examination								
Level	Bloom's Level of Thinking	CLA – 1 (10%)		CLA – 2 (10%)		CLA - 3 (20%)		CLA – 4	l (10%)#	(50% weightage)		
	g	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	20%	20%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	10%	10%	
	Total	100) %	100) %	10	0 %	100) %	10	00 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.S.Arunarani, Assistant Professor, SRMIST KTR

Course	Code	PGI20D04J	Course Nam	e Intelligent	Internet of Things (IIoT)		Cou	irse Ca	ategor	у	D Discipline Elective Courses		L 3	T 0	P 2	C 4							
	-	ite Courses epartment	Nil Computer App	Co-requisite Courses	Nil Data Book / Codes/Standards	P Nil	rogr	essive	Course	s	Nil												
Course Le	arning F	Rationale (CLR):	,	The purpose of learning	this course is to,	Le	arni	ng				P	rogra	am I	Learn	ning (Outco	mes	(PLO	0)			
CLR-1:	Demonst	trate the design, corr	munication mode	and enabling technologie	es for IoT.	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Explore (the system managen	nent and domain f	or various applications of	IoT		(%)	(%	ŝe	\$						I							
CLR-3:	Categoriz	ze the various proto	cols that are used	for developing IoT application	ations.			it (led	ept		lge	on)at		IIIs	IIs			or	
CLR-4:	Deploy a	n IoT application ar	d connect to the	cloud.		30	enc	Attainment (%)	MO	Concepts	р	Knowledge	zati		50	et I	lls	Sk	Skills			Behavior	ing
CLR-5 :	Develop	IoT application for	real time scenario			kin	fici	ainı	Kr	fC	late	Nou	iali	Utilize	elin	rpr	Skills	ing	on	Skills		Beh	Learning
Course Le	earning (Outcomes (CLO):		At the end of this course,	learners will be able to:	Level of Thinking	Expected Proficiency	Expected Att	Fundamental Knowledge	Application of	Link with Related	Procedural K	Skills in Specialization	Ability to Uti	Skills in Modeling	Analyze, Interpret Data	Investigative	Problem Solving Skills	Communication			essional	Life Long Le
CLO-1 :	Understa	nd IoT basics: defin	itions, architectur	es, challenges, and promis	ses	2	85	80	Н	Η	Н	Н	Η	-	-	-	-	-	-	-	-	-	-
CLO-2 :	D-2: Master IoT protocols and software			3	85	80	Н	-	М	-	-	-	-	-	-	-	-	-	-	-	-		
CLO-3 :	LO-3: Gain hands-on experience with IoT hardware			3	85	80	-	Η	Η	-	-	-	-	-	Μ	-	-	-	-	-	-		
CLO-4 :	O-4 : Explore real-world IoT applications in different industries				3	85	80	-	-	Н	-	Н	-	-	-	Μ	-	-	-	-	-	-	
CLO-5 :	Learn to	handle and analyze	IoT data, includir	g using machine learning	for predictions	3	85	80	-	Η	Н	Н	Н	-	-	-	Μ	-	-	-	-	-	-

	ration 10ur)	15	15	15	15	15
S-1	SLO-1	IoT Fundamentals: Definitions, Architectures, Challenges, and Promises: What is IoT?	IoT protocols and software:	The Smart "Things" in IoT:Definition and Architecture of Smart Things	Principles and Foundations of IoT and AI: IoT reference model, IoT platforms.	Generative Models for IoT:
	SLO-2	Impact of IoT, Benefits of IoT	MQTT, UDP	Sensors	Big data and IoT	Generating images using VAEs
S-2	SLO-1	IOI Challenges, IOI and Big Data	MQTT brokers, publish subscribe modes	Actuators	Cross-industry standard process for data mining,	GANs
5-2	SL(J-7)	IoT and Cloud Computing, IoT and Industry 4.0	HTTP, AMQP	Electrical Motors	AI platforms and IoT platforms	Personal and Home IoT
	SI O-I	Architectures and Reference Models of IoT: IoTWF Reference Model of IoT	СОАР	Processing Unit: Microcontroller, Classifications of Microcontrollers	TensorFlow, Keras, Datasets	IoT and smart homes
S-3	SLO-2	Simplified Reference Model of IoT	XMPP and gateway protocols	Three Main Types of Microcontrollers	Data Access and Distributed Processing for IoT: TXT format	Smart lighting
S-4 to S-5	SLO-1	8	Lab 4: Interfacing Temperature Humidity Sensor with Node MCU Esp8266	Lab 7: Create a an Access point and a Webserver using Node MCU Esp8266	Lab 10: Create a Voice Controlled Switch Using Arduino IoT Cloud	Lab 13: Integrating IR sensor with Raspberry pi and control an LED using python

5 (IoT Applications in Vertical Market: Smart Agriculture,	IoT point to point communication technologies: IoT Communication Pattern	ARM Microcontrollers	CSV format, XLSX format	Microcontrollers for IoT: Introduction to Arduino, ESP8266 Node MCU, Arduino IDE, Raspberry pico
S - 6	SLO-2	Logistics and Transportation	IoT protocol Architecture	Architecture	Working with the JSON format, HDF5 format	Getting Started with the ESP8266 , Installing the Arduino IDE for the ESP8266
S-7	SLO-1	Smart Grid, Smart Building, Smart Factory, Smart City	Selection of Wireless technologies : 6LoWPAN, Zigbee, WIFI	Purpose Input/Output (GPIO), Analog Inputs, Analog Outputs	Machine Learning for IoT: ML and IoT	Connecting your module to your Wi-Fi network
5-7	SI 0-2	Standards: "Traditional" Internet Review	BT, BLE,SIG,NFC, LORA, Lifi, Widi	Parallel Interfaces vs Serial Interfaces, Universal Asynchronous Receiver/Transmitter(UART)	Prediction using linear regression, Logistic regression for classification	First Projects with the ESP8266 Controlling an LED
S-8	SLO-1	Physical/Link Layer	Evolution of Cloud Computation,	Serial Peripheral Interface (SPI), I2C (Inter-integrated Circuit)	Classification using support vector machines	Reading data from a GPIO pin Grabbing the content from a web page
5-0	SLO-2	Network Layer	Commercial clouds and their features	Universal Synchronous Asynchronous Receiver Transmitter	Naive Bayes, Decision trees	Reading data from a digital sensor
S-9 to S-10	SLO-1	Lab2: Interfacing Light Sensor with ESP8266 NODE MCU WiFi Board		Lab 8: Interfacing Temperature Humidity Sensor and Visualize data in Cloud Server with Node MCU Esp8266	Lab 11: ESP8266 NodeMCU Data Logging to Firebase Realtime Database	Lab 14: Raspberry Pi: Send an Email using Python
S-11	SLO-1	Transport Layer	open source IoT platforms, cloud dashboards	IoT Frameworks and Platforms:FIWARE, SmartThings, AWS IoT	Deep Learning for IoT -Artificial neuron, Modelling single neuron in TensorFlow	Cloud Data Logging with the ESP8266
	SLO-2	Application Layer	Fog computing: Need for Fog computation	Microsoft Azure IoT	Convolutional neural networks	Hardware and software requirements Hardware
S-12	SLO-1	The Internet of Things: Designing the Architecture of an IP-based Internet of Things	Fog applications		Different layers of CNN	configuration Testing the sensor Logging data to Cloud server, Displaying data using Cloud Application
	SLO-2	Network Layer	Edge computing:Need for edge computation	Azure Stream Analytics	Some popular CNN model	Control Devices from Anywhere, Hardware and software requirements
	SLO-1	Transport Layer	Edge computing architectures	Azure Machine Learning	LeNet to recognize handwritten digits on IoT Device	Configuring the ESP8266 module
S-13	SLO-2	Application Layer	Edge Applications	Azure Logic Apps	Recurrent neural networks	Controlling an LED Controlling the LED from a cloud dashboard Controlling the lamp from anywhere in the world
S-14 to S-15	SLO-1	Lab 3: Interfacing Infrared (IR) Sensor with Node MCU Esp8266	Lab 6: Interfacing Relay and Control LIGHT with Node MCU Esp8266	Lab 9: Create a Smart Switch to Control Light from Internet	Lab 12: Install OS and Configure Raspberry pi	Lab 15: Install Mosquitto MQTT Broker on Raspberry Pi

	Text:	Reference; 1. Hands-On Artificial Intelligence for IoT, Amita Kapoor, 2019, Packt Publishing Ltd.
Learning Resources	 Internet of Things: Architectures, Protocols and Standards, Simone Ci Gianluigi Ferrari, Marco Picone, Luca Veltri, 2019 Wiley. Intelligent Internet of Things From Device to Fog and Cloud, Far Firouzi, Krishnendu Chakrabarty Sani Nassif, Springer. 	Hill,2017.

Learning	Assessment												
				Continuou	Final Examination								
Level	Bloom's Level of Thinking	CLA –	1 (10%)	CLA – 2 (10%)		CLA - 3 (20%)		CLA -	4 (10%)#	(50% weightage)			
	8	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
	Remember	20%	20%	150/	15%	15%	15%	150/	150/	20%	2007		
Level 1	Understand	20%	20%	15%	1.5 %	13%	1370	15%	15%	20%	20%		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 2	Analyze	2076	20%	2070	2070	2070	20%	20%	20%	2070	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	10%	10%		
Level 5	Create	10%	10%	1,3 %	1,3 %0	1,3 %	13%	13%	13%	10%	10%		
	Total	100	0 %	10	100 %		100 %		0 %	100 %			

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers

Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.L. SELVAM, Assistant Professor, SRMIST KTR

Course Code	PGI20D05J	Course Name		Comp	uter Vision		Cour ateg		D Discipline Elective Course		ourse	s	L	Т	Р	С						
						C	ang	ory											3	0	2	4
Pre-requisite Courses	Nil		Co-requisite Courses	Nil			rogre ourse	ssive	Nil													
Course Offering De	partment	Computer Applica	tions		Data Book / Codes/Standard	s Ni	il															
Course Learning Ra	ationale (CLR):	Th	e purpose of lear	rning this c	ourse is to,	Le	arni	ng				Pı	ogra	n Le	arnin	g Out	tcome	es (PI	L O)			
CLR-1: Recognize	e and describe both	the theoretical and j	practical aspects of	of computin	g with images,	1	2	3	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15
	the foundation of in ad the shape and reg	nage formation and	image analysis			_	(%)	t (%)	edge	pts		ge	u		Data		lls	sl			5	
	1 0	form and its applica	tions to detect lin	es, circles,	ellipses	50	ency	nen	lwoi	once	p	vled	zatic			lls	Skil	Skills			avio	ing
CLR-5: Understan	d the Three-dimens	sional image analysi	is techniques and	Motion An	alysis	kin	fici	ainı	l Kn	of C	late	(nor	iali		Vlodeling Interpret	Ski	/ing		Skills		Beh	Learning
Course Learning O					ners will be able to:	Level of Thinking	Expected Proficiency	Expected Attainment (%)	Fundamental Knowledge	Application of Concepts	Link with Related	Procedural Knowledge	S		Skills in Modeling Analyze. Interpret		Problem Solving Skills	Communication	Analytical Sk	ICT Skills	Professional Behavior	Life Long Le
CLO-1: Understan	nd computer vision	including fundamen	tals of image forr	nation		2	85	80	Н	L	-	Μ	Н	Н		-	-	-	-	-	-	-
	ut image formation					3	85	80	L	Н	-	Н	Η	-	- N	1 -	-	-	-	-	-	-
11 2	age processing tech	1				3	85	80	Н	Н	-	-	Η	Н	- N	1 -	-	-	-	-	-	-
	Computational photo					3	85	80	Н	Μ	L	Η	-	Н		-	-	-	-	-	-	-
CLO-5 : Learn abo	ut image rendering					3	85	80	Μ	-	Η	Н	Н	H		-	-	-	-	-	-	-

Durati	on(hour)	15	15	15	15	15
S-1	SLO-1	Definition and scope of computer vision	Object labeling and counting, size filtering	Segmentation: Active contours, Snakes, Dynamic snacks and Condensation	Spline- based motion	Image Rendering: Interpolation view
5-1	SLO-2		Distance functions, Skeletons and thinning	Scissors, Level Sets	Multi-frame motion estimation	Layered images
S-2	SLO-1	Image acquisition, sampling and	Deformable shape analysis, boundary tracking procedures	Split and merge	Layered Motion Motion Models: Planar Perspective	Light fields and Lumigraph
5-2	SLO-2	neighbors of pixels and connectivity, Basic Transformation,	Shape models and shape recognition	Mean shift and mode finding	motion	
S-3	SLO-1	Image enhancement,	Feature detectors	Normalized cut, Graph cuts	Rotational panoramas	Video based rendering: Video base animation
	SLO-2	Color Image processing.	Feature descriptors	Energy based methods	Gap closing	Video textures, 3D Video

S-4 & S- 5	SLO-1	Implementation of 2D and 3D Projections	Implement feature detection algorithms such as Harris corner detection, SIFT, or FAST.	Build a simple object detection system using Haar cascades or HOG features	Implement Motions models	Implement a light field or lumigraph rendering system
	SLO-2			Detect and localize objects in images or video streams.		
S-6	SLO-1	Image Formation: Geometric primitives and transformations	Matching Feature tracking	2D and 3D feature based alignment	Cylindrical and spherical coordinates	Recognition: Object detection, Face detection
	SLO-2	Photometric image formation The digital camera	Edge detection	Pose estimation, Geometric intrinsic calibration	Global adjustment: Bundle adjustment	Pedestrian detection
S-7	SLO-1	Image processing: Point Operators	Edge linking	Motion Structure: Triangulation Two-frame structure from motion	Parallax removal, Recognizing panoramas	Face recognition: Eigen faces
	SLO-2	Linear filtering	Hough Transforms	Factorization	Composting: Choosing a composting surface	Active appearance and 3D shape models
S-8	SLO-1	More neighborhood operators	Hough Transform (HT) for line detection	Bundle adjustment	Pixel selection and weighting	Instance recognition : Geometric alignment, Large databases
	SLO-2	Fourier transforms	foot-of-normal method	Constrained structure and motion	Blending	Application : Location recognition
	SLO-1	Build a color constancy algorithm	implementation of Canny's edge			Develop a facial recognition system
S-9 & S-10	SLO-2	that uses the assumption that the spatial average of reflectance is constant. Use finite-dimensional linear models	detector	pyramid from an image	to estimate motion vectors in video sequences	using OpenCV or deep learning frameworks and Train a model to recognize faces from images or video streams
S-11	SLO-1	Pyramids and wavelets	line localization &line fitting	Motion Estimation: Translational alignment,	Methods for 3D vision: Projection schemes	Category recognition, Bag of words, Part-based models
	SLO-2	Geometrics transformations	RANSAC for straight line detection	Hierarchical motion estimation	Shape from shading	Recognition with segmentation
	SLO-1	Global Optimization	HT based circular object detection	Fourier- based alignment	Photometric stereo, Shape from focus	Application: Intelligent photo editing
S-12	SLO-2	Feature Detection: Points and patch	Accurate center location	Incremental refinement	Active range finding	Understanding Context and scene
S-13	SLO-1	Binary shape analysis	Speed problem		Surface representations, point based representation	Learning and Large image collection
	SLO-2	Connectedness	Ellipse detection		Volumetric representation	Application : Image Search
S-14 & S-15	SLO-1 SLO-2	Implementation Two-dimensional Fourier transforms, Wiener filtering	Implement a Hough transform based line finder	Implement a mean shift segmenter	Implement 3d Reconstruction.	Implement an Object detection

	Text:	Reference
	RichardSzeliski, "Computer Vision: Algorithms and Applications", Springer, 2010.	1. Rafael C. GonzaLez'"Digital Image Processing", Pearson Education; Fourth edition (2018)
Learning		2. Computer Vision: Principles, Algorithms, Applications, Learning Hardcover, E.R.Davies 5th
Resources	S. Nagabhushana,"Computer Vision and Image Processing", NewAge International Pvt Ltd;	edition (2017)
Resources	First edition (2005)	3. Digital Image Processing and Analysis, Application with MAtLab, CVIPtools Scott E Umbaugh
		3rd edition, 2018

	Bloom's Level of Thinking									Final Examination 50% Weightage	
	Thinking	CLA-	1(10%)	CLA-2	2(10%)	CLA-3	6(20%)	CLA-4	4(10%)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level1	Remember	10%	15%	10%	15%	10%	15%	10%	15%	10%	15%
	Understand										
Level2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Analyze										
Level3	Evaluate	20%	15%	20%	15%	20%	15%	20%	15%	20%	15%
	Create										
	Total	10	0%	10	0%	100)%	100%		100)%

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526		Dr.S.Usha, Assistant Professor, SRMIST KTR

Course	PGI20D06J	Course Name	Natural Language	Processing			-		Discipline Elective Courses						P	\square	C						
Code					Categ	gory											3		0		2		4
Pre-requisite Courses Nil Co-requisite Courses Nil											Р	rogres	sive (Cours	5 6 5							Nil	
Course Offering Department Computer Applications Data Book / Codes/Standards						Nil						08100		cour									
Course Learning Rationale (CLR): The purpose of learning this course is to,					Learning Program Learning Outcomes (PLO)																		
CLR-1: Unde	rstand fundamentals	of Natural Language	Processing			1	2	3]	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Understand Named Entity Recognition and Parsing techniques in NLP						(%)	(%)		dge	ots	e	L			ita		s						
CLR-3 : Understand NLP algorithms for parsing and topic modeling CLR-4 : Explore advanced text processing techniques in NLP					-				owle	Concepts	ledg	atio			t Data	s	Skills	Skills			vior	g	
CLR-5: Develop practical skills in implementing NLP based Applications						of Thinking	ficie	Attainment		Kne	f Co	celated Knowledge	Specialization	lize	in Modeling	Interpret	Skill	ing		Skills		3eha	earning
I						hin	\Pr	Atta		ntal	0 10	al K	peci	to Utilize	lod	Inte	ive	Solving	icati		50	l la l	
Course Learning Outcomes (CLO): At the end of the			t the end of this course, learn	ners will be able to:		Level of T	Expected Proficiency	Expected		Fundamental Knowledge	Application of	Link with Kelated Procedural Knowl	Skills in S	v t	Skills in N	Analyze,]	Investigative Skills	Problem 3	Communication	Analytical	ICT Skills	Professional Behavior	Life Long
CLO-1 : Demonstrate a comprehensive understanding of NLP Pipeline				2	85	80		Η		- H	H		-	-	-	Η	-	-	-	-	-		
CLO-2 : Demonstrate a comprehensive understanding of the principles and different approaches in NLP					3	85	80		L	-	- H	Η	Η	-	-	-	Η	-	М	-	-	-	
CLO-3 : Develop practical skills in implementing NLP based pipeline						3	85	80		L	Η	- H	Н		-	-	-	Н		-	-	-	-
CLO-4: Apply NLP concepts to solve variety of real-world problems in text processing						3	85	80		L	Н	- H	Η	Η	-	-	-	Н	-	-	-	-	L
CLO-5 : Critically evaluate the performance and ethical implications of different NLP Real world applications					ons	3	85	80		L	-	- H	Η	Η	-	-	-	Н	-	-	-	-	-

Duration	(hour)	15	15	15	15	15				
S-1	SLO-1	Overview of NLP	Introduction to Named Entity Recognition (NER)	Probabilistic Context-Free Grammar (PCFG)	Introduction to Word Vectors	Information Extraction and its approaches				
	SLO-2	Definition and Scope of NLP	Types of Named Entities	Applications of PCFG	Role and applications of word vector					
S-2	SLO-1	Uses of NLP	NER Approaches and	Chunking and Segmentation	Word2Vec Model-CBOW and	Introduction to Text Summarization				
	SLO-2	Challenges of NLP	Algorithms	Chunking techniques and approaches	Skip Gram	Extractive vs. Abstractive Summarization				
S-3	SLO-1	Linguistics for NLP- Morphology, Syntax, Semantics, Pragmatics	NER Applications	Hidden Markov Models	GloVe (Global Vectors for Word Representation):	Summarization in Real-world Applications				
	SLO-2	Corpus and Corpus Linguistics	Challenges in NER		FastText:	Ethical and Social Implications of Summarization:				
S-4-5	SLO-1		Lab 4: Building a Named		Lab 9: Python implementation	Lab 11: Case Study: Analyzing Twitter				

	SLO-2	Lab1: NLP Library Exploration - NLTK, SpaCy, CoreNLP and others	Entity Recognition System	Lab7: Implement a simple rule- based chunker that identifies noun phrases (NP) in a given sentence.	of Word Similarity Exploration with Word Vectors	Data for Sentiment Analysis
S-6	SLO-1	Tokenization	Introduction to Stopwords	Conditional Random Field and its	ELMo (Embeddings from Language Models):	Introduction to Chatbots
	SLO-2	Lemmatization	Common Stopword Lists in Various NLP Applications	implementation	BERT (Bidirectional Encoder Representations from Transformers):	Types of Chatbots
S-7	SLO-1	Stemming	Introduction to Regular Expression	Introduction to Topic Modeling:	Introduction to Information Retrieval	Natural Language Understanding (NLU)
	SLO-2	stemming Algorithm	Splitting text into tokens based on regex patterns	Generative vs. Discriminative Models in NLP	Information Retrieval Models- Vector space model and other models	Natural Language Generation (NLG):
S-8	SLO-1	Introduction to Text encoding	Regex libraries and functions for text processing tasks	Latent Dirichlet Allocation (LDA)	Query Processing and Evaluation	Retrieval based and Conversation based NLU and NLG
	SLO-2	Various text encoding techniques	Regular expression Applications in NLP		Semantic Search and Knowledge Graphs:	
S-9-10	SLO-1	Lab2: perform	Lab 5: To perform stop	Lab8: Implement of basic LDA	Lab 9:Implement a simple	Lab 12: Case Study: Designing a Chatbot
	SLO-2	tokenization, stemming, and lemmatization on any text dataset	word removal from text	topic model using Python's gensim library and apply it to a small corpus of text documents.	information retrieval system using a vector space model to retrieve relevant documents for user queries.	for Customer Service Queries
S-11	SLO-1	Introduction to POS tagging	Introduction to Syntax analysis in NLP	Latent Semantic Analysis (LSA)	Multimodal Information Retrieval	Machine Translation
	SLO-2	POS tagging in NLP applications	Syntax tree	Latent Semantic Analysis (LSA) implementation	Challenges in Information Retrieval	Rule-based Machine Translation (RBMT)
S-12	SLO-1	POS Tagging Algorithm	Context Free Grammars	Applications in Topic modeling	Information Fusion	Statistical Machine Translation (SMT)
	SLO-2	and Techniques	Syntax rules and productions in CFGs	Challenges in Topic modeling	Methods of Information Fusion- cross model information fusion	Neural Machine Translation (NMT) Challenges in Machine Translation
S-13	SLO-1	POS Tagging Libraries and Tools	Parsing in NLP	Sentiment Analysis	Applications of Information Fusion in NLP:	Question Answering Systems
	SLO-2	Challenges in POS tagging	Dependency Parsing	Types of Sentiment Analysis	Challenges in Information Fusion	
S-14-15	SLO-1 SLO-2	Lab3 :Hands-on experience with POS tagging tasks.	Lab6: Python script to validate the strength of passwords based on certain criteria using regular expressions and extract username in email address using RE	Lab9:Impement sentiment analysis	Lab 10: Implement a basic system to perform sentiment analysis by fusing textual and visual features from social media posts.	Lab 13: Case Study: Building a Question Answering System for Wikipedia Articles

Learning Resources	 "Speech and Language Processing" by Daniel Jurafsky and James H. Martin: Practical Natural Language Processing, By Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta and Harshit Surana, June 2020 	 C.Manning and H.Schutze, —Foundations of Statistical Natural Language Processingl, MIT Press. Cambridge,MA:,1999 Natural Language Processing with Python Quick Start Guide, NirantKasliwal, November 2018 YoavGoldberg, Neural Network Methods for Natural Language Processing.
	3. Natural Language Processing with Python and spacy, Vasiliev, April 2020.	

	Bloom's		Continuous Learning Assessment (50% weightage)											
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (10%)		CLA –	3 (20%)	CLA –	4 (10%)#	(50% weightage)				
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
	Understand													
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
	Analyze													
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Create													
	Total	10	0 %	100) %	10	0 %	10	0 %	100	0 %			

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.

Course Designers				
Experts from Industry		Experts from Higher Technical Institutions		Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Excl Singapore, 608526	nange,	Dr.S. Gopinathan, Professor and Head, Department of Computer Sci University of Madras, Guindy Campus, Chennai – 600 025	ence,	Dr. M. Pandiyan, Assistant Professor, SRM IST

Cou	rse DC120S011	Course	Prompt Engineering in Generative AI (Lab: Google Generative AI Studio)	Course Cotogony C	Ch:ll Fach an ann an	L	Т	Р	С	
Cod	PUTIZUSULI	Name	Prompt Engineering in Generative AI (Lab: Google Generative AI Studio)	Course Category S	Skill Enhancement	2	0	2	3	

Pre-requisite Courses	Nil	Co-requisite Courses	Nil							Prog	gressi	ive C	ours	ses							Nil	
Course Offering Department	Computer App	olications	Data Book / Codes/Standards	Nil																		
Course Learning Rationale (CLR):											Рі	rogra	am I	.earr	ning	Outc	ome	s (PL	.0)			
CLR-1: To generate new content b	based on variety of	inputs		1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: To enhance the ability to u	ise generative AI e	ffectively			(%)	(%)		ge	s													
CLR-3 : To apply various models i	n AI							led	oncepts		dge	ation			Data		Skills	lls			or	
CLR-4 : To know the various Prom	npts			හ	Proficiency	Attainment		10W	onc	ğ	Knowledge	zati		<u>ы</u>		lls	Sk	Skills			Behavior	ing
CLR-5 : To build variety of AI pov	vered Applications			Thinking	fici	ain		l Kı	of C	Related	, no	Specializ	to Utilize	Modeling	Interpret	Skills	Solving	ion	Skills		Beh	arn
				hin	Prc	Att		nta	00 0	~		pec	Ū	lod	Inte	ive	òolv	cat	I Sľ			Le
Course Learning Outcomes (CLO)		At the end of this course, learn	ners will be able to:	Level of T	Expected	Expected		Fundamental Knowledge	Application	Link with	Procedural	Skills in S	Ability to	Skills in N	Analyze, l	Investigative	Problem S	Communication	Analytical	ICT Skills	Professional	Life Long
CLO-1 : To acquire the knowledge	to get best output	from the right question.		3	80	70		Н	L	Μ	-	Н	L	-	-	-	Н	-	-	-	-	-
CLO-2 : To work efficiently with C		3	85	75		Н	L	Μ	-	Н	М	-	-	-	Н	-	-	-	-	-		
CLO-3 : To able to craft the promp	CLO-3 : To able to craft the prompt for the various conditions.			3	75	70		Н	Μ	М	-	Н	Η	-	-	-	Η	-	-	-	-	-
CLO-4 : To implement the encodin	g and Decoding of	Text	3	85	80		Н	Н	Μ	-	Н	Н	-	-	-	Н	-	-	-	-	-	
CLO-5: To construct variations of	AI Applications us	sing Web Interface	3	85	75	1	Н	Н	Μ	-	Н	Н	-	-	-	Н	-	-	-	-	-	

Duratio	n(hour)	12	12	12	12	12
S1	SLO-1	Prompt Engineering: Introduction	Standard Practices for Text Generation with Chat GPT: Generating List and Hierarchical List Generation	Advanced Techniques for Text Generation with LangChain : Introduction to LangChain	8	Image Generation :What are diffusion Models
	SLO-2	Role of Prompts in AI Model	Generating JSON	Chat Models	Agents	Open AI DALL-E
		What is Generative AI?	Diverse Format Generation with Chat GPT	Streaming Chat Models	Using LLMs as an API (Open AI functions)	Stable Diffusion
S2	SLO-2	Principles of Prompting	Chunking Test	Creating Multiple LLM Generations	Comparing Open AI functions and reAct	Format Modifiers
S3- S4	LAB 1- Apply 5 Principles of SLO-1 prompting and Generate a Image Prompt		LAB 4- Build a simple chunking algorithm in Python	LAB 7- Creating a generator in LangChain	LAB 10- Implement Simple reAct	LAB 14- Generate a AI with various Format Modifiers

S5		Evolution of AI: From Rule-Based to Generative Models	Chunking Strategies	LangChain Prompt Template	Agent Toolkits	Art Style Modifiers
	SLO-2	Text Generation Models	Encoding	LangChain Expression Language (LCEL)	Customizing Standard Agents	Reverse Engineering Prompts
S 6	SL 0-1	Open AI's Generative Pre- Trained Transformers(Chat GPT,Google Bard, LSTMs and others)	Sentiment Analysis	Vector Database	Understanding and Using Memory	Quality Booster
	SLO-2	Popular Use Cases for Generative AI	Least to most	Retrieval Augmented Generation	Memory in LangChains	Negative Prompt
S7-S8	SLO-I	LAB 2- Working with Chat GPT Prompt-I	LAB 5- Implement Encoding and Decoding of Text	LAB 8- Working with Prompt Template and Vector Database	LAB 11- Custom and Build the Agent	LAB 14- Generate a AI with various Prompts
00		Designing Effective prompt	Role Prompting	Embedding	Other Popular Memory types in LangChains	Prompting with an Image
39	SLO-2	Prompt Generation Strategies	GPT Best Practices	Document Loading	Open AI functions Agents with memory	Inpainting and Outpainting
S10	SLO-1	Chat GPT Examples	Classification Model	Memory Retrieval with FAISS	Advanced Agent Framework	Running Stable Diffusion
	SLO-2	Prompt for specific domain	Mets Prompting	Self Querying	Callbacks	Automatic1111 Web User Interface
S11-S12	SLO-1	LAB 3- Working with Chat GPT Prompt-II	LAB 6- Build a Classification Model	LAB 9- Working with FAISS	-	LAB 15- Build AI powered Applications

Text Book:	References:
LearningResourcesPrompt Engineering for generative AI by James Phoenix and Mike Taylor,	https://www.tutorialspoint.com/prompt_engineering/prompt_engineering_translate_prompt.html
O'Reilly Media, Inc Publication, July 2024.	https://datasciencehorizons.com/pub/Mastering Generative AI Prompt Engineering Data Science Horizons v1.pdf
Prompt Engineering for generative AI by Johnny M Hill	

Learning A	Assessment										
	Bloom's		mination								
	Level of Thinking	CLA –	1 (10%)	CLA –	CLA – 2 (10%)		3 (20%)	CLA – 4	4 (10%)#	(50% w	eightage)
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
	Understand										
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
	Analyze										
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Create										
	Total	10) %	10	0 %	100 %		10	0 %	100) %

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	University of Madras, Guindy Campus, Chennal – 600025	Dr. Anwar R Shaheen, Assistant Professor, SRMIST KTR

Course (Code	PGI20AE1T	Course Name	Career Advancement	– I	Course	Cate	gory	AE	Al	oility	' Enł	nanc	eme	nt Co	ours	e		L T 3 0			<u>}</u>	C 2
Pre-requi	site Cou	ırses	Nil	Co-requisite Courses	Nil	Pro	gress	ive Co	urses	Nil	1								•	, ,		<u></u>	,
-		Department	Career Guidance		Data Book / Codes/Standards		,																
Course L (CLR):	earnin	g Rationale	The purpose of le	earning this course is to,		L	earn	ing				Pro	ogra	m Le	earni	ng O	outco	omes	(PL	0)			
CLR-1 :	Demons	strate various prine	ciples involved in so	olving mathematical concept	IS .	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 : Develop interest and awareness in students regarding profit/ loss, i CLR-3 : Critically evaluate basic mathematical concepts related to mixtures permutation and combination and Statistics CLR-4 : Provide students with skills necessary to generate and interpret dat Series, Direction Sense and blood relation. CLR-5 : Enable students to understand reasoning skills CLR-6 : Create awareness in students regarding the various concepts in qua reasoning skills and also its importance in various competitive examples.			erate and interpret data and c s rious concepts in quantitative	ligations,	of Thinking (Bloom)	Expected Proficiency (%)	ed Attainment (%)	Eundamental Knowledge	Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	e, Interpret Data	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ills	Professional Behavior	ng Learning	
(CLO):				s course, learners will be	able to:	I evel							Skills in		Skills iı	Analyze,	Investig		Comm		ICT Skills	Profess	Life Long
		-	-	ed on numbers, logarithms.		3			Н		М	Η	L	М	-	Н	-	Н	-	Η	М	-	Н
					pplicable in our day to day life	3			M		Μ	Η	-	Μ	-	Н	-	Η	-	Η	М	-	Н
	O-3 : Understand the concepts of mixtures and alligations, permutation and combiting time and work and to approach questions in a simpler and innovative method				3	85	70	M	Η	М	Η	-	М	-	Н	-	Н	-	Η	М	-	Н	
	.O-4 : Understand the concept in Word Series, Number Series, Symbol Series and Direction Sense			3			M	_	Μ	Η	-	Μ	-	Н	-	Η	-	Н	М	-	Н		
CLO-5:	LO-5 : Ability to solve the problems on Logical Reasoning			3	85	75	M	Η	Μ	Н	-	Μ	-	Н	-	Н	-	Н	М	-	Н		
CLO-6 :	Able to	face different con	npetitive exams			3	80	70	Ν	Н	Μ	Η	-	Μ	-	Н	Н	Μ	-	Н	М	-	Н

Dura	ation (hour)	9	9	9	9	9
S-1	SLO-1	Classification of numbers	Profit and Loss-Introduction	Permutation –Introduction& Basics	Word problems on Line equations-Introduction	Number Puzzles
	SLO-2	Tests of divisibility	Profit and Loss- Basic Problems	Permutation – Problems	Word problems on Line equations- Basic problems	Number Puzzles - Problems
S-2	SLO-1	Unit digit	Statistics-Introduction	Combination-Introduction& Basics	Syllogisms - Basics	Number Puzzles - Problems
	SLO-2	Tailed zeroes	Statistics-Mean, Median, Mode	Combination- Problems	Syllogisms - Problems	Number Puzzles – Tricky Problems

S-3	SLO-1	Series Formulae	Averages-Introduction & Basics	Probability- Introduction & Basics	Word series - Introduction	Logical Puzzles
5-3	SLO-2	Arithmetic Progression Geometric Progression	Averages- Problems	Probability- Basics	Word series – Problems	Logical Puzzles - Problems
S-4	SLO-1	Highest Common Factor (HCF) Greatest Common Measure	Averages- Problems	Probability- Problems	Number series - Introduction	Logical Puzzles –Problems
	SLO-2	Least Common Multiples (LCM)	Averages-Tricky Problems	Probability- Tricky Problems	Number series - Problems	Logical Puzzles - Tricky Problems
S-5	SLO-1	HCF, LCM	Averages-Tricky Problems	Set Theory Introduction	Symbol Series - Introduction	Sequential output tracing- Basics
5-5 _	SLO-2	HCF, LCM - Solving problems	Averages-Tricky Problems	Set Operation	Symbol Series - Problems	Sequential output tracing- Problems
S-6	SLO-1	Simplification	Ratio – Basics and Formulas	Set - Problems	Direction Sense - Introduction	Sequential output tracing- Problems
5-0	SLO-2	Simplification - Problems	Ratio - Problems	Set - Tricky Problems	Direction Sense - Problems	Sequential output tracing- Tricky Problems
S-7	SLO-1	Virnaculum	Proportions – Basics and Formulas	Time and work-Introduction	Blood relation-Introduction	Inductive, Logical, Abstract
	SLO-2	Virnaculum - Problems	Proportions - Problems	Time and work-Men and Work	Blood relation-Problems	Inductive, Logical, Abstract- Problems
S-8	SLO-1	Logarithm –Introduction of log rules	Mixtures and Alligations- Introduction	Time and work - Problems	Coding – Decoding-Introduction	Diagrammatic Reasoning
	SLO-2	Logarithm – Problems	Mixtures and Alligations- Problems	Time and work - Tricky Problems	Coding – Decoding-Different types	Diagrammatic Reasoning- Problems
S-9	SLO-1	Logarithm – Applications of log rules	Boats and Streams	Pipes &Cisterns- Introduction	Coding – Decoding - Problems	Spatial Reasoning
	SLO-2	Logarithm Application – Problems	Boats and Streams- Problems	Pipes &Cisterns-Problems	Coding – Decoding – Tricky Problems	Spatial Reasoning- Problems

Learning Assessment														
		Continuous Learning Assessment (100% weightage)												
evel 1	Bloom's Level of Thinking	CLA-1 (20%)	CLA-2 (20%)	CLA-3 (30%)	CLA-4 (30%) ##									
		Theory	Theory	Theory	Theory									
Level 1	Remember	10%	10%	30%	15%									
	Understand													
Level 2	Apply	50%	50%	40%	50%									
	Analyze													
Level 3	Evaluate	40%	40%	30%	35%									
	Create													
	Total	100 %	100 %	100 %	100 %									

$\label{eq:classical} \# CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mockinterviews, etc. \\ \# CLA-4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini - Projects, Case - Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., \\ \end{tabular}$

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. P. Chockalingam, Senior Lead Software Engineer,	Dr. G. Saravana Prabu, Asst. Professor, Department of English,	Dr. Sathish K, HOD, Department of Career Guidance Cell, FSH, SRMIST
Virtusa Consulting Services Private Ltd, DLF IT Park SEZ, Chennai - 600089	Amrita Vishwa Vidhyapeetham, Coimbatore - 641112	Dr. Aarthi S, Assistant Professor, Department of Career Guidance Cell, FSH, SRMIST

SEMESTER II

Course Code		PGI20C04J	Course Name	Python Progr	amming for Data Science	-	Cour ateg			С		Professional Core Course									L 3	T 0	P 3	C 4
Pre-req Cour		Nil		Co-requisite Courses	Nil			Progressive Courses Nil																
Course O	ffering I	Department	Computer App	lications	Data Book / Codes/Standa	rds	Nil																	
Course Learning Rationale (CLR): The purpose of learning this course is to,							Le	arning Program Learning Outcomes (PLO)																
CLR-1 : 7	To under	stand why Pythor	n is a useful script	ing language for develo	opers.		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: 7				â	_	•						Knowledge												
CLR-3 : 7	To learn	how to design obj	ject-oriented prog	rams with Python class	ses.		(Bloom)	(%)	%	dge	ts		e	_	vlee		ta		s					
CLR-4 : 7	To learn	Error and Excepti	ion handling in Py	thon applications.			BIC		ant	wlee	leep		gba	tior	nou		Da		Skills	Skills			ior	20
	To learn Compone		ing NumPy and P	andas, database connec	ctivity and Graphical User Interface		Thinking (ficien	Attainment (%)	Knov	of Con	with Related	nowl	Specialization	Utilize K	in Modeling	Interpret Data	Skills	Solving Sl		Skills	1	Behav	Learning
							hin	\Pr	Att	ntal	0 10	Re	al K	pec	Uti	Iod	Inte	ive	solv	cat			[la	
Course Learning Outcomes (CLO): At the end of t			At the end of this co	urse, learners will be able to:		Level of T	Expected Proficiency	Expected	Fundamental Knowledge	Application of Concepts	Link with	Procedural Knowledge	_	Ability to	Skills in N	Analyze, I	Investigative	Problem S	Communication	Analytical	ICT Skills	Professional Behavior	Life Long	
CLO-1:	Apprecia	te the basic and a	dvanced features	of core language-built	core language-built ins			80	70	Н	Η	Μ	Η	М	М	М	М	-	М	-	-	-	-	-
CLO-2:	-2: Handle and control system/OS level features		3	85	75	Η	Η	Μ	Μ	Н	М	М	М	-	М	-	-	-	-	-				
CLO-3:	LO-3 : Implementing OOP Concepts in Python Applications			3	75	70	Μ	Μ	Μ	Η	Μ	Η	Н	М	-	М	-	-	-	-	-			
CLO-4 :	.O-4 : Data Analysis Using NumPy and Pandas			3	85	80	Μ	Μ	Н	Н	М	М	М	Н	-	Н	-	-	-	-	-			
CLO-5:	D-5 : Design and implement basic applications with database connectivity.			3	85	75	Μ	Μ	Μ	М	Н	Н	Н	Μ	-	Н	-	-	-	-	-			

Duratio	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to Python	Object Oriented Programming in Python	Modules and Packages in Python	Introduction to Data Analysis	Python - GUI.
	SLO-2	Python Interpreter	Classes, Objects	Creating and Importing Modules	Machine Learning Basics	Introduction to TKinter
S-2	SLO-1	Python IDE-Interactive Mode	-Interactive Mode Uses of Standard		Arrays in Python- Importing and Creating an Array,	Top Level Windows
	SLO-2	Script Mode	Constructors	Sys modules	Array Operations	Dialogs, Message and Entry
S-3	SLO-1	Elements of Python Language	Inheritance	Random Module	Introduction to NumPy- Array Creation in NumPy, NumPy Properties,	Event handling, Menus

	SLO-2	Python Block Structure	Types of Inheritance	Statistics Module	Arithmetic Operations on NumPy, Data Analysis using NumPy	List boxes and Scrollbars
8-4,5,6	SLO-1	Lab1: Simple programs	Lab 4: Implementing Inheritance	Lab 7: Implementing Modules	Lab 10: Descriptive Statistics Using NumPy	Lab 13: Building GUI Application with tKinter
S-7	SLO-1	Data Types	Method Overloading	Threads	Pandas	SQLite -Introduction
	SLO-2	Variables & Assignment	Method Overriding	Advantages of Threading	CRUD Operations with Pandas	SQLite Commands
S-8	SLO-1	Operators & Expressions	Class Method	Threading Functions	Series Indexing	SQLite Operators and Expressions
	SLO-2	Tuples, Lists	Static Method	Creating threads	Series Statistical Methods	Database Creation
S-9	SLO-1	Sets, Dictionaries	Errors and Exceptions	Binary Files	Data Frames with Pandas,	Table Creation
	SLO-2	Iterators, Generators and Comprehensions	Built-in Exceptions	Reading Binary Files	Indexing in Data Frames	CRUD Operations-Insert, Select,Update,Delete
S- 10,11,12	SLO-1 SLO-2	Lab 2: Programs Using Tuples,List,Dictionary and Sets	Lab 5: Implementing Method Overloading	Lab 8: Implementing Threads	Lab 11: Illustrate Indexing Operations in data frame	Lab 14: Creating Tables Using SQLite
S-13	SLO-1	Decision Making and Branching	Handling Exceptions with try and except statement	Command Line Arguments	Data Manipulation in Data Frames	SQLite Aggregate Functions
	SLO-2	Break and continue	Handling Exceptions with Finally Statement	Shell variables	Data Analysis Using Pandas	Date and Time Functions
S-14	SLO-1	Decision Making and Looping Statements	User Defined Exceptions	Parallel System Tools	Data Analysis and Visualization with Python	SQLite Keys
	SLO-2	Functions	Creating User Defined Exception Class	Python Libraries for Parallel Processing	Data Visualization Using Pandas	Conditions
S-15	SLO-1	Lambda Expressions	File Handling	Regular Expressions	Data Visualization using Matplotlib	Database Connectivity
	SLO-2	Filter Function	Reading & Writing Files	RegEx Functions	Scikit-learn	Connect SQLite with Python
S- 16,17,18	SLO-1 SLO-2	Lab 3 : Illustration on Lambda and Filters Top of Form	Lab 6: Illustration on how to raise an Exception	Lab 9: Illustration on Command Line Arguments and Regular Expressions	Lab 12: Illustrate various Plots using Pandas and Matplotlib	Lab 15: Illustration on Database Connectivity

Learning	 Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1 st Edition, Shroff Publishers, 2017. ISBN: 978-9352136278. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
Resources	3. S.Sridhar , J.Indumathi, V.M . Hariharan "Python Programming " 2023 ISBN-978-93-560-6933-6

Learning	Assessment													
			Final Exa	mination										
Level	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	2 (10%)	CLA –	3 (20%)	CLA – 4	l (10%)#	(50% weightage)				
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
T	Remember	20%	20%	150/	150/	150/	150/	15%	150/	150/	150/			
Level 1	Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
Level 5	Create	10%	10%	13%	13%	13%	13%	13%	13%	13%	13%			
	Total	100 % 100 % 100 %		100) %	100 %								

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.J.Anita Smiles, Assistant Professor, SRMIST KTR

FACULTY OF SCIENCE AND HUMANITIES

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Course PGI20C05J Code		Course Nam	e Deep Neural Net		Course		С		Pr	ofess	ional	l Cor	e Co	urse	•		Ι	Ĺ		T	Р	\square	С
Code	•				Category												3	3	1	0	3		4
Pre	-requisite Courses	Machine Learnin	ng Co-requisite Courses	Nil		Progressive Courses												Nil					
	Offering Department	Computer Appli		Data Book / Codes/Standards	5	Nil						3											
						[
Course Lo	earning Rationale (CLR):	The purpose of learning this c	ourse is to,		Le	arni	ng				Р	rogra	am L	earn	ing (Outco	omes	; (PL	.0)			
CLR-1 :	Understand fundamental	s of deep learning				1	2	3		2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 :	Understand principles an	d algorithms of deep	p neural networks.				(%)	(%)	9							_							
CLR-3 :	Understand optimization	algorithms, and trai	ining procedures.					nt (9	lode	Concepts		lge	on			Data		Skills	lls			or	
CLR-4 :	Explore advanced archite	ectures of deep neur	al networks			50	Proficiency	Attainment			g	Knowledge	zati		<u>م</u>	et I	lls	Sk	Skills			Behavior	ing
CLR-5 :	Develop practical skills	in implementing dee	p neural networks			 Thinking	ofici	ain	17.	fC		, NO	ilali	to Utilize	lelir	Interpret	Skills	Solving	ion	Skills		Beh	arn
						hin			at a	0 U	Re	al F	pec	Ū	Iod	Inte	ive	Solv	icat		s	nal	Le
Course Lo	earning Outcomes (CLC)):	At the end of this course, learners will be able to:			Level of 1	Expected	Expected	Rindomontol Knowlodco	Application of	Link with Related	Procedural	Skills in Specialization	N	Skills in Modeling	Analyze,	Investigative	Problem	Communication	Analytical	ICT Skills	Professional	Life Long
CLO-1 :	Demonstrate a comprehe	ensive understanding	g of algorithms of deep neural net	works.		2	85	80	I	I L	-	Н	Η	Η	-	-	-	-	-	-	-	-	-
CLO-2 :	Demonstrate a comprehe	ensive understanding	g of the principles and algorithms	he principles and algorithms of deep neural networks.		3	85	80	1	L	-	Н	Η	Η	-	-	-	-	-	-	-	-	-
CLO-3 :	CLO-3 : Develop practical skills in implementing, tr frameworks.		ining, and evaluating deep learning	ng models using pop	ular	3	85	80	1	, H	-	Н	Η	Н	-	-	-	-	-	-	-	-	-
CLO-4 : Implement advanced architectures of deep neural networks		eural networks			3	85	80	1	. H	[-	Н	Η	Η	-	-	-	-	-	-	-	-	-	
CLO-5 :	CLO-5 : Critically evaluate the performance and ethical im decisions when designing and deploying AI system			models and make inf	formed	3	85	80	I	. H	-	Н	Η	Н	-	-	-	-	-	-	-	-	-

Duratio	n (hour)	18	18	18	18	18
	SLO-1	An Introduction to Neural Networks	Recurrent Neural Networks	Hierarchical Softmax for Many Classes	Feature Preprocessing, Initialization	Recurrent Neural Networks - Introduction
S-1	SLO-2	Humans Versus Computers: Stretching the Limits of Artificial Intelligence	Convolutional Neural Networks	Backpropagated Saliency for Feature Selection	The Vanishing and Exploding Gradient Problems-Geometric Understanding of the Effect of Gradient Ratios	Architecture of Recurrent Neural Networks
S-2	SLO-1	The Basic Architecture of Neural Networks	Hierarchical Feature Engineering and Pretrained Models	Matrix Factorization with Autoencoders	A Partial Fix with Activation Function Choice	Language Modeling Example of RNN- Generating a Language Sample
3-2	SLO-2	Single Computational Layer: The Perceptron	AdvancedNeural Architectures- Reinforcement Learning	Autoencoder: Basic Principles	Dying Neurons and "Brain Damage", Leaky ReLU, Maxout	Backpropagation Through Time, Bidirectional Recurrent Networks, Multilayer Recurrent Networks

	SLO-1	Multilayer Neural Networks	Generative Adversarial Networks	Autoencoder with a Single Hidden Laver	Gradient-Descent Strategies	The Challenges of Training Recurrent Networks - Layer Normalization
S-3	SLO-2	The Multilayer Network as a Computational Graph	The MNIST Database of Handwritten Digits, The ImageNet Database	Connections with Singular Value Decomposition	Learning Rate Decay	Echo-State Networks
S-4-6	SLO-1 SLO-2	Lab1:Implement the perceptron in a programming language.	Lab4:Implement a basic feedforward neural network with one or more hidden layers. Train the network on a simple dataset for binary classification	autoencoder neural network for unsupervised learning tasks such as dimensionality reduction or image denoising.		Lab13:Implement an RNN for sequential data tasks such as time series prediction or text generation. Train the RNN on datasets like the IMDB movie review dataset or stock price data.
S-7	SLO-1	Training a Neural Network with Backpropagation	Machine Learning with Shallow Neural Networks	Sharing Weights in Encoder and Decoder	Radial Basis Function Networks - Introduction	Long Short-Term Memory (LSTM)
	SLO-2	Practical Issues in Neural Network Training	Neural Architectures for Binary Classification Models	Nonlinear Activations	Training an RBF Network	Gated Recurrent Units (GRUs)
S-8	SLO-1	The Problem of Overfitting	Revisiting the Perceptron	Deep Autoencoders	Training the Hidden Layer- Training the Output Layer - Expression with Pseudo-Inverse	Applications of Recurrent Neural Networks
5-0	SLO-2 The Vanishing and Exploding Gradient Problems Least-Squares Regression		Application to Outlier Detection	Orthogonal Least-Squares Algorithm - Fully Supervised Learning.	Convolutional Neural Networks - Introduction	
	SLO-1	Difficulties in Convergence	Widrow-Hoff Learning	When the Hidden Layer Is Broader than the Input Layer-Sparse Feature Learning	Variations and Special Cases of RBF Networks	Basic Structure of a Convolutional Network
S-9	SLO-2	Local and Spurious Optima	Closed Form Solutions	Simple Neural Architectures for Graph Embeddings	Relationship with Kernel Methods	Training a Convolutional Network
	SLO-1	Lab2: Implement the	Lab5:Implement the softmax	Lab8: Implement a simple	Lab11: Implement the basic	Lab14: Implement a CNN for image
S-10-12	SLO-2	perceptron in a programming language of your choice.	classifier using a deep- learning library of your choice	autoencoder neural network for unsupervised learning tasks such as dimensionality reduction or image denoising. Train the autoencoder on datasets like the MNIST handwritten digit dataset.	architecture of an RBF network, consisting of an input layer, a hidden layer with radial basis functions, and an output layer.	classification tasks using libraries like TensorFlow or PyTorch. Train the CNN on datasets MNIST
S-13	SLO-1	Computational Challenges	Logistic Regression	Training Deep Neural Networks- Introduction	Restricted Boltzmann Machines - Introduction	Generative Adversarial Networks (GANs)- Training a Generative Adversarial Network ., Comparison with Variational Autoencoder
	SLO-2	The Secrets to the Power of Function Composition	Support Vector Machines	Backpropagation- Backpropagation with the Computational Graph Abstraction	Hopfield Networks	Using GANs for Generating Image Data , Conditional Generative Adversarial Networks
S-14	SLO-1	Common Neural Architectures	Neural Architectures for Multiclass Models	Dynamic Programming to the Rescue	The Boltzmann Machine	Competitive Learning -Vector Quantization

	SLO-2	Simulating Basic Machine Learning with Shallow Models	Multiclass Perceptron	Backpropagation with Post- Activation Variables	Restricted Boltzmann Machines	Kohonen Self-Organizing Map
	SLO-1	Radial Basis Function Networks	Weston-Watkins SVM	Backpropagation with Pre-activation Variables	Applications of Restricted Boltzmann Machines	Limitations of Neural Networks -One- Shot Learning
S-15	SLO-2	Restricted Boltzmann Machines	Multinomial Logistic Regression (Softmax Classifier)	Examples of Updates for Various Activations -The Special Case of Softmax	Stacking Restricted Boltzmann Machines	Energy-Efficient Learning
S-16-18	SLO-1 SLO-2 SLO-2	Lab3: Implement a basic feedforward neural network with one or more hidden layers.	Lab6: Implement a basic feedforward neural network with one or more hidden layers. Train the network on a simple dataset for regression tasks.	Lab9:Implementation of a feedforward neural network trained using backpropagation for binary classification task	Lab12: Implement the training algorithm for the RBF network, such as the k-means clustering algorithm for determining the centers of the radial basis functions, and the least squares method for computing the	Lab15: Implement a basic GAN for generating synthetic data samples. Train the GAN on datasets like the MNIST dataset for generating handwritten digits.

	Text;		Reference	e:
Learning Resources	1. 2. 3. 4. 5. 6.	Text book – "Neural Networks and Deep Learning" Springer International Publishing, June 2023 Aggarwal, Charu C. Ian Goodfellow, Yoshua Bengio, Aaron Courville. —Deep Learningl, MIT Press Ltd, 2016 Li Deng and Dong Yu, —Deep Learning Methods and Applicationsl, Publishers Inc. Satish Kumar "Neural Networks A Classroom Approach" Tata McGraw-Hill.	1. 2.	JM Zurada —Introduction to Artificial Neural Systemsl, Jaico Publishing House M. J. Kochenderfer, Tim A. Wheeler. —Algorithms for Optimizationl, MIt Press. Reference: "Deep Learning with Python" First Edition by Francois Chollet

	Bloom's			Final Examination								
	Level of Thinking	CLA – 1 (10%)		CLA – 2 (10%)		CLA – 3 (20%)		CLA –	4 (10%)#	(50% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
	Understand											
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
	Analyze											
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Create											
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10	0 %	

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr Sathya K, Assistant Professor, SRM IST							

Course	ourse Code PGI20C06T Course Name Modern Optimization Techniques					Cou	rse	Categ	gory	С		Prof	essic	onal	Cor	e Co	urse			L 1 4 (C 4
Pre-	requisit	te Courses	Nil	Co-requisite Courses	Nil	Pro	ogres	ssive (Courses	Ν	il											-	
	Course Offering Department Mathematics and Statistics Data Book / Codes/Standards							t Need															
Course Learning Rationale The purpose of learning this course is to: (CLR): The purpose of learning this course is to:							rnin	g				Pro	ograr	n Lea	arniı	ng Ou	itcon	nes (l	PLO)			
CLR-1:	To im	part the overall v	iew of the subject of o	operations Research		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:			models for solving re														-						
CLR-3 :				solve quantitative issues in infor	rmation technology	a												e					
CLR-4 :	This m analys		lelling, provides the k	nowledge in planning, controlli	ing and scheduling to the network	(Bloom)	y (%)	Attainment (%)	edge			ള			50		ing	Competence		Engagement			
CLR-5 :	To dev	velop the decision	n-making knowledge.				cienc	inmei	nowle	ng	Jg	sonin			oning	Thinking	,earn	Comp	ing	lgage		Skills	Learning
						of Thinking	Expected Proficiency (%)	cted Attai	Disciplinary Knowledge	al Thinking	em Solving	Analytical Reasoning	Research Skills	ı Work	scientific Reasoning	Reflective Thin	self-Directed Learning	Multicultural	Ethical Reasoning		Skills	Leadership Sk	Long Lea
Course Lea (CLO):	arning	Outcomes	At the end of this	course, learners will be able t	0:	Level	Expe	Expected .	Disci	Critical	Problem	Analy	Rese	Team	Scien	Refle	Self-I	Multi	Ethic	Com	ICT 5	Lead	Life I
CLO-1:	1: To understand the mathematical models and its limitations.						85	80	Μ	L	L	-	L	-	L	-	М	L	L	L	Μ	Μ	L
CLO-2:	2 : To have skill in analysis of data by graphical and other methods.					3	80	70	-	L	Н	-	Н	-	L	-	Н	М	Н	Μ	L	Μ	L
CLO-3:	CLO-3: To enable the student to apply the technique in solving problem						70	65	Μ	Μ	Н	-	Н	-	М	-	М	М	Н	Μ	Ll	M-	Μ
CLO-4 :	LO-4: To provide the students with opportunity of using various software package for solving linear programming integer programming models						70	70	Н	Н	М	-	М	-	М	-	Η	L	М	L	М	Н	Н
CLO-5 :	To introduce the students to the use of basic methodology for the solution of linear programs and integer pro							70	-	Μ	Μ	-	М	-	М	-	Н	М	Н	Μ	М	Η	М

Duratio	n (hour)	12	12	12	12	12
S-1	SLO-1	Introduction to operations research	Introduction of Transportation	Introduction of game theory Basic definitions and Examples.		Introduction of Queuing theory, Basic Definitions
5-1	SLO-2	Basic Definitions	Basic Definitions	Characteristics of Game theory and Uses of Game theory,	Objectives of Network Analysis and Main function of Network	Uses of Queuing theory, Meaning of Queuing System
	SLO-1	Meaning of Operations Research	Mathematical formulation of LPP	Pure Strategies: Maximin -Minimax Principle	Advantages of Network Analysis	Elements of Queuing System
S-2	SLO-2	Advantages of Operations Research	Finding initial Solution by Row- minima Method & Column-minima Method	Problems based on saddle point	limitations of Network Analysis	Kendal's Notation for representing Queuing models
S-3	SLO-1	Uses of Operations Research	Finding initial Solution by matrix- minima Method	Mixed strategy-based problems	Rules for constructing a project network	The average number of units in the system
5-3	SLO-2	Nature of Operations Research	Finding initial Solution by North- West Corner Method	Finding value of the games with saddle points	Constructing project network	Finding probability of waiting time in the Queue

S-4	SLO-1	Role of Operations Research in computer science	Finding initial Solution by VAM Method	Finding value of the games without saddle points	Network computations by Critical path method	. Problems on (M/M/1)
5-4	SLO-2	Role of Operations Research in Information technology	Find the initial solution for unbalanced transportation problem	Solving 2X2 games	Earliest start time of a project network	Introduction to Inventory, Types of Inventory
S-5 to	SLO-1	Formulating the problem	Finding the optimum solution to maximize the profit	Solving 2X2 games	Earliest completion time of a project network	Application of Inventory
S-8	SLO-2	Some Basic Assumptions	Calculating Optimum Solutions by MODI method	Matrix oddment method for nxn games	Latest start time of a project network	Some basic formulas
S-9	SLO-1	Standard form of LPP and Canonical form of LPP	Optimum Solution without Loop, ii) Optimum Solution with Loop	Matrix oddment method for nxn games	Latest completion time of a project network	Cost involved in inventory problem
3-9	SLO-2	Graphical solution of a LPP	Introduction of Assignment problem	Introduction of Dominance property, Rules of Dominance	Network computations by PERT	Deterministic inventory models
	SLO-1	Working Procedure for Graphical method	Hungarian procedure for solving Assignment Problem	Solving Games by Dominance property	Basic difference between PERT and CPM	Economic order quantity (E.O.Q)
S-10	SLO-2	Solving LPP by Graphically	Mathematical Form & Difference between Transportation and Assignment Problems	Solving Games by Dominance property	Time estimates-Expected duration of each activity	Purchasing model with no shortages
S-11	SLO-1	Graphical Method, (i)Feasible Solution	Unbalanced Assignment Problem	solving game- Graphical method,		Problems on Purchasing model with no shortages
	SLO-2	, ii) Infeasible Solution, ii) Unbounded Solution	Finding the optimum solution to Restriction assignment method	Graphical Solutions of 2xM	Total float	Manufacturing model with no shortages
S-12	SLO-1	Simplex Method	Finding the optimum assignment to maximize the profit	Graphical Solutions of N x2	Free float and independent float	Manufacturing model with no shortages
5-12	SLO-2	Simplex Method	Solving the Travelling Salesmen Problem	Limitations of Game Theory	Problems on Total float Free float and Independent float	Problems on Manufacturing model with no shortages

	1.	C.R.Kothari, (2013)"Quantitative Techniques" Third Revised Edition S.ChandLtd, NewDelhi.
Learning Resources	2.	V.Sundaresan, K.S.Ganapathy Subramanian, K. Ganesan (2017) "Resource Management Techniques" Eleventh Edition, A.R Publication.
	3.	Kallavathy.S, (2014) "Operations Research" Fourth Edition, Vikas publishing house.

Learning	g Assessment										
	Bloom's (50% Continuous Learning Assessment weightage) Final Examination (50% weightage)										(waightaga)
Level	Level of Thinking	CLA – 1	(10%)	CLA –	2 (15%)	CLA – 3	(15%)	CLA –	4 (5%)#	Final Examination (50)	/o weightage)
	Level of 1 minking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
	Remember										
Level 1	Understand	30%	-	30%	-	30%	-	30%	-	30%	-
	Apply										
Level 2	Analyze	40%	-	40%	-	40%	-	40%	-	40%	-
	Evaluate										
Level 3	Create	30%	-	30%	-	30%	-	30%	-	30%	-
	Total	100	%	100) %	100	%	100	0 %	100%	

CLA - 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers	
Experts from Higher Technical Institutions	Internal Experts
Dr.M.A.Baskar, Professor & Head, Dept. Of Mathematics, Loyola college, Chennai	S.LAKSHMI PRIYA SRMIST Assistant Professor, Dept. Mathematics
Dr.P.Dhanavanthan, Professor & Head, Dept. Of statistics, Pondicherry University	and Statistics, FSH, SRMIST

Р L Т С Course Course Course PGI20D07J **Data Engineering and Knowledge Representation** D **Discipline Elective Courses** 3 0 2 Code Name Category 4 **Co-requisite** Progressive **Pre-requisite Courses** NIL NIL NIL Courses Courses **Course Offering Department Computer Applications** Data Book / Codes/Standards NIL Course Learning Rationale (CLR): **Program Learning Outcomes (PLO)** The purpose of learning this course is to, Learning 3 12 13 14 15 CLR-1 : Introduction to data engineering 2 3 1 2 4 5 6 7 8 9 10 11 1 Expected Attainment (%) CLR-2: Learn Data Modeling and Database Design **Expected Proficiency (%)** Fundamental Knowledge Application of Concepts Analyze, Interpret Data Learn Big Data Processing and Analytics **Procedural Knowledge Problem Solving Skills** CLR-3: Skills in Specialization **Communication Skills Professional Behavior** Life Long Learning Learn Knowledge Representation CLR-4: Investigative Skills Link with Related Level of Thinking **Skills in Modeling** Ability to Utilize Analytical Skills CLR-5 : Learn Advanced data engineering and knowledge representation ICT Skills Course Learning Outcomes (CLO): At the end of this course, learners will be able to: Understand the basics of data engineering 80 70 Η Η Μ L M M CLO-1 : 3 Μ L Μ ------M M Understand data modeling, ERD, Normalization, De-normalization, Index strategies 3 85 75 Η Η Μ L Μ L CLO-2 : -L _ -75 70 М L H CLO-3 : Apply the concepts of Big Data Technologies 3 Μ L L Μ Н L ---Perform different knowledge representation techniques 85 80 М Μ L H Η CLO-4 : 3 L L Μ -М ---М Μ Μ M H Н CLO-5 : Implement techniques for data quality and data governance 3 85 75 L _ Μ _ Μ _ .

Dura	tion (hour)	15	15	15	15	15
S-1	SLO-1Definition and scope of data engineering in modern data ecosystems.Fundamentals of and its importanc development.		Introduction to Data Modelling: Fundamentals of data modelling and its importance in database development.	Introduction to Big Data Technologies: Overview of Big Data: Introduction to the concept of Big Data, its characteristics, and significance in modern data analytics.	Basics of Knowledge Representation Introduction to knowledge representation paradigms and models	Data Quality and Data Governance Techniques for data quality assessment and improvement
	SLO-2	Evolution of data engineering and its role in enabling data-driven decision-making.	Overview of different data modeling approaches and methodologies.	Evolution of Big Data Technologies: Historical overview of the development of Big Data technologies and frameworks.	Fundamentals of symbolic representation and semantic networks	Implementing data governance frameworks and policies
S-2	SLO-1	Importance of Data Engineering: Understanding the significance of data engineering in handling large volumes of data efficiently.	Conceptual, Logical, and Physical Data Models: Explanation of conceptual data models and their role in capturing high-level business requirements.	Batch Processing vs. Stream Processing: Batch Processing Overview: Explanation of batch processing, its principles, and applications in handling large volumes of data.	Ontologies and Knowledge Graphs Understanding ontology creation and management	Data Integration and ETL (Extract, Transform, Load) Processes Designing and implementing ETL pipelines for data integration

	SLO-2	Impact of effective data engineering on business intelligence, analytics, and machine learning initiatives.	Understanding logical and physical data models and their transformation process from high- level concepts to database implementation.	Stream Processing Overview: Introduction to stream processing, its advantages, and use cases in real-time data analytics.	Practical applications of knowledge graphs in various domains	Strategies for handling data transformations and data cleansing in ETL processes
S-3	SLO-1	Data Engineering Lifecycle: Phases involved in the data engineering lifecycle, including data ingestion, processing, transformation, and analysis.	Entity-Relationship Diagrams (ERD): Basics of ER modeling and its components such as entities, attributes, and relationships.	Hadoop Ecosystem (HDFS, MapReduce, Hive, Spark): Hadoop Distributed File System (HDFS): Overview of HDFS, its architecture, and role in storing and processing large datasets.	Semantic Web Technologies (RDF, OWL) Overview of Resource Description Framework (RDF) and its role in semantic web	Data Security and Privacy Implementing data encryption and access control measures
	SLO-2	Best practices for orchestrating and managing data workflows throughout the data engineering lifecycle	Practical techniques for creating ER diagrams to represent database structures and relationships.	MapReduce and Hive: Explanation of MapReduce programming model, Hive query language, and their integration with Hadoop ecosystem.	Introduction to Web Ontology Language (OWL) and its usage for expressing ontologies	Privacy-preserving techniques for data processing and sharing
	SLO-1	Setting Up a Data Engineering	Lab 4 Creating Entity-	Lab 7: NoSQL Database Implementation	Lab 10: Semantic Web	Lab 13: Data Integration and
8-4,5	SLO-2	Environment Data Ingestion Using Apache Kafka Data Processing with Apache Spark Data Storage with Hadoop Distributed File System (HDFS)	Relationship Diagrams Designing Relational Database Schemas Normalization and Denormalization		Technologies (RDF, OWL)	ETL (Extract, Transform, Load) Processes
S-6	SLO-1	Data Ingestion, Processing, Storage, and Retrieval: Techniques and methodologies for ingesting data from diverse sources into data storage systems.	Relational Database Design Principles: Principles of relational database design including atomicity, consistency, isolation, and durability (ACID).	NoSQL Databases (MongoDB, Cassandra): MongoDB Overview: Introduction to MongoDB, a document-oriented NoSQL database, its features, and use cases.	Reasoning and Inference in Knowledge Representation Types of reasoning mechanisms in knowledge representation systems	Machine Learning for Data Engineering Leveraging machine learning for data cleansing and anomaly detection
	SLO-2	Strategies for processing, storing, and retrieving structured and unstructured data at scale.	Designing normalized relational database schemas to minimize redundancy and ensure data integrity.	Apache Cassandra Overview: Overview of Apache Cassandra, a distributed NoSQL database, its architecture, and benefits.	Techniques for logical inference and deduction in knowledge-based systems	Incorporating machine learning models into data engineering pipelines for predictive analytics
S-7	SLO-1	Tools and Technologies in Data Engineering: Overview of popular data engineering tools and platforms, such as Apache Spark, Hadoop,	Normalization and Denormalization Techniques: Explanation of normalization forms (e.g., 1NF, 2NF, 3NF) and their significance in database design.	Data Warehousing and OLAP: Data Warehousing Concepts: Introduction to data warehousing, its architecture, and role in decision support systems.	Knowledge Representation Languages Comparison of different knowledge representation languages (e.g., Prolog, CycL)	Emerging Trends in Data Engineering Adoption of data mesh architecture for decentralized data management
	SLO-2	Comparison of different tools and technologies	Understanding denormalization techniques to optimize query performance and facilitate data retrieval.	In OLAP (Online Analytical Processing): Explanation of OLAP concepts, multidimensional data analysis, and OLAP cube design.	Syntax and semantics of Description Logics (DL) for knowledge representation	Integration of MLOps practices for streamlining machine learning model deployment and management

r	1	1	1	1	1	
S-8	SLO-1	Data Engineering in Cloud Environments: Advantages and challenges of implementing data engineering solutions in cloud environments, such as AWS, Azure, and Google Cloud Platform.	Indexing Strategies: Overview of indexing concepts and their importance in optimizing query performance.	Stream Processing Frameworks: Introduction to stream processing frameworks such as Apache Flink and Apache Kafka Streams.	Knowledge Extraction and Acquisition Methods for extracting structured knowledge from unstructured data sources	Graph Databases and Knowledge Graph Technologies Designing and querying graph databases for knowledge representation
	SLO-2	Best practices for leveraging cloud- based services and infrastructure for data storage, processing, and analytics.	Strategies for selecting appropriate indexing techniques based on query patterns and data access patterns.	Real-time Analytics: Real-time Data Processing: Overview of real-time data processing techniques, their importance, and applications.	Techniques for knowledge acquisition from domain experts and external repositories	Utilizing knowledge graph technologies for semantic search and recommendation systems
	SLO-1	Lab 2 : Building ETL Pipelines	Lab 5: Indexing and Query	Lab 8:	Lab 11 Knowledge	Lab 14 Anomaly Detection
S-9,10			Optimization Database Implementation with SQL	OLAP Cube Design and Implementation	Representation Languages Knowledge Extraction and Acquisition	with Machine Learning
S-11	SLO-1	Real-time Data Processing: Techniques and architectures for processing streaming data in real- time, including stream processing frameworks like Apache Flink and Apache Storm.	Constraints and Data Integrity: Types of constraints (e.g., primary key, foreign key, unique constraint) and their role in maintaining data integrity.	Data Lake Architecture: Data Lake Overview: Explanation of data lake architecture, its components, and benefits for storing and analyzing large volumes of data.	Knowledge Representation in Machine Learning Integration of symbolic knowledge representation with machine learning algorithms	Quantum Computing and Knowledge Representation Exploring the potential impact of quantum computing on knowledge representation algorithms
	SLO-2	Data Quality Management: Strategies and frameworks for ensuring data quality throughout the data engineering lifecycle, including data profiling, cleansing, and validation.	Techniques for enforcing constraints and ensuring data consistency within a database.	Data Lake Implementation: Considerations and best practices for designing and implementing a data lake architecture.	Hybrid approaches for combining statistical learning with symbolic reasoning	Explainable AI in Knowledge Representation Techniques for enhancing the interpretability of knowledge representation models
S-12	SLO-1	Scalability and Performance Optimization: Techniques for scaling data engineering solutions to handle growing volumes of data and increasing workloads.	Data Modeling Tools: Overview of popular data modeling tools such as ERwin, Lucidchart, and MySQL Workbench.	Scalable Data Storage Solutions: Scalable Storage Architectures: Overview of scalable storage architectures such as distributed file systems and object storage.	Knowledge Graph Embeddings Introduction to knowledge graph embedding techniques (e.g., TransE, DistMult)	Augmented Data Management Leveraging augmented reality interfaces for data visualization and exploration
	SLO-2	Optimization strategies for improving the performance of data processing pipelines, including parallelization, caching, and resource allocation.	Advanced Database Design Patterns: Exploration of advanced database design patterns such as star schema, snowflake schema, and graph database modeling.	Cloud Storage Solutions: Introduction to cloud storage services like Amazon S3, Google Cloud Storage, and their scalability features.	Applications of knowledge graph embeddings in link prediction and entity classification	Integrating AI-driven data management tools for automating data governance tasks

S-13	SLO-1	Emerging Trends in DataBig Data Modeling ConsideraEngineering:Considerations for modelingExploration of emergingin big data environments, inctechnologies and trends shaping theschema-on-read vs schema-orfuture of data engineering, such asserverless computing, edgecomputing, and AI-driven datamanagement.		Emerging Trends in Big Data Technologies: - Edge Computing: Explanation of edge computing concepts, its role in processing data closer to the source, and its impact on Big Data analytics.	Applications of Knowledge Representation in AI Use of knowledge representation techniques in natural language processing (NLP) tasks	Continuous Intelligence and Real-time Decision Making Implementing real-time analytics systems for continuous intelligence
5-13	SLO-2	Emerging Trends in Data Engineering: Exploration of emerging technologies and trends shaping the future of data engineering, such as serverless computing, edge computing, and AI-driven data management.	Techniques for designing flexible and scalable data models to accommodate the volume, velocity, and variety of big data sources.	Server less Computing: Introduction to server less computing models such as AWS Lambda, Azure Functions, and their applications in Big Data processing.	Knowledge-based systems for decision support and expert systems	Enabling real-time decision- making through event-driven architectures and stream processing frameworks Top of Form
	SLO-1	Lab 3 : Real-time Data	Lab 6: Data Migration and	Lab 9: Data Lake Implementation	Lab 12: Knowledge	Lab 15: Graph Databases
S-14,15	SLO-2	Processing with Apache Flink Top of Form	Conversion		Representation in Machine Learning	and Knowledge Graph Technologies

Learning	1."Data Science for Business" by Foster Provost and Tom Fawcett 2."Designing Data-Intensive Applications" by Martin Kleppmann
Resources	3."Semantic Web for the Working Ontologist" by Dean Allemang and James Hendler

Learning A	Learning Assessment											
			Continuous Learning Assessment (50% weightage)								inal Examination	
Level	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	2 (10%)	CLA –	3 (20%)	CLA – 4	l (10%)#	(50% weightage)		
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level I	Understand	20%	20%	1570	1.5 70	13%	13%	1570	1.5 /0	13%	13%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	20%	2070	20%	2076	20%	20%	20%	20%	2078	2070	
Level 3	Evaluate		10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 5	Create	10%	1070	1,5 %	13%	1,5 %	1,5 %	1.5 %	1,5 %	1370	1.5.70	
	Total) %	100) %	10) %	10) %	100 %		

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.B.Srividhya, Assistant Professor, SRMIST KTR

Course	Code	PGI20D08J	Course Name	Introduction	to Robot	ics Au	tomat	ion		Cou	rse Ca	ategor	·у	D	Dise	ciplin	e Elec	tive (Course	e –	L T 3 0		C 4
		te Courses Department	Nil Computer App	Co-requisite Courses lications	Nil Data Bo	ook / Co	des/Sta	andards	N	0	essive (e Courses Nil											
Course I (CLR):	Course Learning Rationale The purpose of learning this course is to, (CLR):				1					Learni	ng				Prog	ram L	earnii	ng Out	tcomes	s (PLC))		
CLR-1	To Und	erstanding the Evo	olution and Classif	ication of Robotics		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2	To Exp	loring Automation	Principles and Te	chnologies							~												
CLR-3 :	To Dev	eloping Proficienc	y in Python Progra	amming for Robotics		(m	(%)	(%	ge	s	ipline			ledge									
CLR-4 :	To Han	ds-On Experience	with Raspberry Pi	and Python Integration		g (Bloc	ency ('	nent ('	owled	ncept	l Disc	/ledge	ation	Know	50	et Data	sl	Skills	Skills			Behavior	gu
CLR-5 :	To Und	erstanding Robot 1	Kinematics, Dynai	nics, and Control		of Thinking (Bloom)	Proficie	Attainment (%)	ntal Kn	n of Cc	Related Disciplines	ıl Know	pecializ	Utilize	Iodeling	Interpret	ive Skil	olving	cation S	Skills			Long Learning
Course I Outcome			nd of this course,	learners will be able to:		Level of T	Expected Proficiency	Expected	Fundamental Knowledge	Application of Concepts	Link with	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, I	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ICT Skills	Professional	Life Long
CLO-1 :	Demon	strate Proficiency	in Python Program	ming for Robotics		3	80	70	L	Н	Μ	L	L	-	L	-	L	-	-	-	L	-	-
CLO-2 :	Apply l	Kinematics and Dy	namics Principles	to Robot Systems		3	85	75	Н	Н	Н	М	L	-	L	-	L	-	-	-	-	-	-
CLO-3 :	³ Utilize Python for Advanced Robot Control Techniques			3	75	70	Μ	Н	Μ	Н	L	-	-	-	L	-	-	-	L	-	-		
CLO-4 :	Develop and Implement Machine Learning Algorithms for Robotics			3	85	80	Μ	Н	Μ	Н	L	-	-	-	L	-	-	-	L	-	-		
CLO-5 :	Contrib	ute to Ethical and	Responsible Robo	tics Development		3	85	75	Н	Н	М	Н	L	-	-	-	L	-	-	-	L	-	М

Dura	Duration (hour) 15 15		15	15	15	
	SLO-1	Fundamentals of Robotics	Robot Kinematics and Dynamics - Homogeneous Transformations	Robot Control Systems- Advanced Control Techniques	Advanced Robotics : Machine Learning for Robotics	Robotics, Automation, and Society
S-1	SLO-2	History and evolution of robotics (from early automata to modern robots)	1 0 1	Model predictive control (MPC)	Introduction to supervised and reinforcement learning	The Future of Work and Robotics

	SLO-1	Classification of robots (industrial, service)	Homogeneous transformation matrices	Adaptive control	Applications of machine learning in robot control	Impact of automation and robotics on the future of work
S-2	SLO-2	Classification of robots mobile, special-purpose)	Forward and inverse kinematics of serial manipulators	Nonlinear control	Applications of machine learning in robot perception, and decision- making	Job displacement with robotics
	SLO-1	Robot anatomy (arms, manipulators, end-effectors, sensors, actuators)	ImplementhomogeneoustransformationcalculationsPython for basic robot kinematics.	Introduce advanced control techniques and their potential applications in robotics	Deep learning techniques for robotics	Reskilling opportunities with robotics
S-3	SLO-2	Kinematics and dynamics (position, velocity, acceleration analysis)	Robot Dynamics-Lagrangian and Newtonian mechanics	scikit-learn for machine learning components	Implement basic machine learning algorithms (e.g., decision trees, reinforcement learning) in Python for robot control tasks.	Ethical considerations in workforce automation
	SLO-1	Lab:1 Introduction to Raspberry Pi -Setting up and configuring Raspberry Pi	Lab: 4 Kinematics and Dynamics Simulation -Using simulation software (e.g., V-	Lab:7 Advanced Control System Implementation -Design and implement advanced control	Lab:10 Machine Learning for Robot Control: Train and implement machine learning	Lab:13 Robotics Project Students will select a project topic related to robotics or automation,
8-4-5	Introduction to Raspberry Pi operating system		REP, Gazebo) to model and simulate robot kinematics and dynamics Implement Python scripts to interact with simulation software and analyze robot behavior.	systems (MPC) for robot control tasks using Python. Experiment with different control strategies and evaluate their performance.	models using Python for specific robot control tasks (e.g., object recognition, path planning). Evaluate the performance of machine learning models and refine them for improved results.	applying the knowledge and skills acquired throughout the program
	SLO-1	Python concepts	Equations of motion for robots	Motion Planning and Navigation	Human-Robot Interaction (HRI)	Robotics and Social Responsibility
S-6	SLO-2	Introduce Python concepts for basic robot control.	Trajectory planning and control	Path planning algorithms (A*, Rapidly-exploring Random Trees (RRT))	Principles of user-centered design for robotics	Algorithmic bias and fairness in robotics
S-7	SLO-1	Automation Fundamentals - Automation principles and benefits (increased efficiency, productivity, and safety)	Introduce basic concepts of robot dynamics and relate them to Python-based control algorithms.	Trajectory planning (kinematic and dynamic considerations)	Human factors and ergonomics in robot interaction	Safety and security concerns
5-7	SLO-2	Types of automation (fixed, programmable, flexible)	Robot Perception-Fundamentals of robot vision (cameras, image processing)	Obstacle avoidance and navigation strategies	Safe and effective collaboration between humans and robots	Safety and security concerns in autonomous systems
S-8	SLO-1	Automation technologies (sensors, actuators, control systems)-	Sensor fusion for robots (combining data from multiple sensors)	motion planning algorithms in Python	Design and implement user interfaces for robot interaction using Python.	Responsible development of robotics technologies
5-8	SLO-2	Industrial automation applications (manufacturing, assembly, logistics)-	Localization and mapping techniques (SLAM)	simulate robot navigation scenarios	Explore ethical considerations in HRI	Deployment of robotics technologies.

S-9-10	SLO-1	Lab2:Python Programming for Robotics Applications - Controlling simple robots (e.g., line following robots) using Python and Raspberry Pi.	Lab 5:Robot Vision with Raspberry Pi Camera -Image acquisition and processing using Raspberry Pi camera.	Lab:8 Robot Navigation Simulation -Utilize simulation software (ROS with Gazebo) to develop and test robot navigation algorithms using Python.	Lab:11 HRI Project :Design and develop a project that demonstrates effective human- robot interaction using Python or other suitable platforms.	Lab: 14 The project will involve: Defining the project scope and objectives.
	SLO-2	Data acquisition and processing from sensors using Python	Object detection and recognition using Python libraries (OpenCV).	Design and simulate various navigation scenarios with obstacles and dynamic environments.	Emerging Trends in Robotics:Bio-inspired robotics.	Researching the chosen topic and identifying relevant ethical considerations.
0.11	SLO-1	The role of Python in automation scripting and	The role of Python libraries like OpenCV in robot vision and image processing.	Motion Planning Algorithms - Overview of motion planning algorithms: A*, RRT, PRM, Dijkstra's algorithm,	Swarm robotics	Legal and Regulatory Frameworks
S-11	SLO-2	control systems	Perception Algorithms - Object detection(YOLO, SSD) and recognition.	Explanation of each algorithm with examples and pseudocode	Soft robotics	Existing and emerging legal frameworks for robotics
	SLO-1	Introduction to Python Programming -Python basics (data types, variables, operators, control flow)	Semantic segmentation algorithms (FCN, U-Net)	Pros and cons of different motion planning techniques	Ethical and societal implications	Emerging legal frameworks for automation
S-12	SLO-2	Functions, modules, and libraries (NumPy, Pandas, Matplotlib)	Tracking and localization - Mapping	Introduction to robot simulation environments	Ethical and societal implications of advanced robotics	Regulatory requirements for safe and ethical deployment of robots
G 12	SLO-1	Object-oriented programming concepts	Object tracking algorithms (Kalman filter, particle filter)	Setup and configuration of a basic robot model in the simulation environment	Analyze and discuss the trends in robotics	Analyze legal and regulatory frameworks
S-13	SLO-2	Introduction to numerical computing and data analysis with Python libraries (NumPy, Pandas)	Applications and Future Trends	Integration of motion planning algorithms with the simulation environment	Explore the challenges of emerging trends in robotics and their impact on society.	Explore the frameworks relevant to the chosen field of specialization within robotics and automation.
	SLO-1	Lab:3 Implementing basic control algorithms (e.g., PID control) in Python.	Lab:6 Develop Python programs for camera interfacing, image capture. Basic object recognition	Lab:9 Autonomous Navigation- Integrate mapping, localization, path planning, and obstacle	Lab:12 Design and develop a project that demonstrates effective human-robot interaction	Lab: 15 Designing and implementing the project using Python, Raspberry Pi, or other
8-14- 15	SLO-2	Develop Python programs for robot communication, sensor data acquisition, and control using Raspberry Pi.	using Raspberry Pi.	avoidance. Design and simulate various navigation scenarios with obstacles and dynamic environments.	using Raspberry Pi or other suitable platforms.	suitable tools and technologies. Testing and evaluating the project's performance and addressing any ethical concerns, Documenting the project and presenting the findings.

Learning Resources	Text book: 1."Robotics: Principles and Practice" Authors: Kamen, Stephen J., Frank C. Sup Publisher: Pearson Edition: Third Edition. 2. "Python Robotics: A Guide to Develop Intelligent Robots Using Python and TensorFlow". Authors: Prof. Diwakar Vaish, Publisher: Apress. 3."Robot Modeling and Control", Authors: Mark W. Spong, Seth Hutchinson, M. Vidyasagar, Publisher: Wiley.	 Reference Book: 1. "Computer Vision: Algorithms and Applications", Authors: Richard Szeliski, Publisher: Springer. 2. "ROS Robotics By Example", Authors: Carol Fairchild, Dr. Thomas L. Harman, et al., Publisher: Packt Publishing.
--------------------	---	--

Level	Bloom's Level of Thinking			Continuo	us Learning Asses	sment (50% weigh	ntage)			Final Exa (50% we			
		CLA – 1 (10%)		CLA – 2 (10%)		CLA –	3 (20%)	CLA – 4 (10%)#				
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
	Understand												
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
	Analyze												
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Create												
	Total	100) %	100 %		100	0 %	100	%	100 %			

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture		Dr.R.Thilagavathy Department of Computer Applications,
Drive, #13-26 Vision Exchange, Singapore, 608526	Science, University of Madras, Guindy Campus, Chennai – 600 025	SRMIST

Course C	Code PGI20D09J	Course	Android Appl	lications Development	Course Category		D	Ι	Disci	plin	e El	ectiv	ve C	ours	se	L	Т	Р	0	2				
		Name																		3	0	2	4	ł
				1		_		~																
	requisite Courses	Nil	Co-requisite Courses	Nil			gressi	ve Co	urse	s	Ni	I												
Course Of	fering Department	Computer App	plications	Data Book / Codes/Standards	Ni	I																		
								Γ																
Course Lea	rning Rationale (CLR):		The purpose of learning th	his course is to,	Le	arni	ng					P	rogra	m L	<i>earn</i>	ing (Outc	omes	s (PL	.0)				
CLR-1: T	o understand mobile appli	rm	1	2	3] [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
	To utilize the features in android studio and analyze the need of simple applications								1	2	5	-	5	0	'	0	/	10	11	12	15	14		—
						(%)	(%)		dge	ots		e	_			ta		s						
_						IC			wle	Concepts		edg	tion			Data		Skills	Skills			Behavior	50	
					gu	ier	Ĩ		no	O	ed	Į M	iza	e	ng	ret	Skills	S S		s		hav	i	
CLR-5: T	o strategize, organize, and	l construct a uniqu	e Android application from i	inception to functionality.	Thinking	Proficiency	Attainment		al K	of	elat	Kne	Specialization	Utilize	Modeling	Interpret		Solving	tio	Skills			earning	
Course Learning Outcomes (CLO): At the end of this course, lea					Level of	Expected	Expected		Fundamental Knowledge	Application	Link with Related	Procedural Knowledge		Ability to U	Skills in Mo	Analyze, Int	Investigative	Problem Sol	Communication	Analytical S	ICT Skills	Professional	Life Long L	
CLO-1: R	: Recognize current mobile development trends and Android platform advancements effectively.				3	80	70		Η	Н	Μ	L	L	-	-	-	L	-	-	-	-	-	-	
CLO-2: E	2: Employ Android Studio features to assess and create basic applications.				3	85	75		Η	Η	Н	Μ	L	-	-	-	L	-		-	-	-	-	
CLO-3: A	0-3 : Apply creative concepts to develop versatile Android applications for various needs.				3	75	70		М	Н	М	Н	L	-	-	-	L	-]	-	-	-	-	
CLO-4 : E	O-4 : Enable learners to pursue Android app development careers confidently.				3	85	80		М	Η	М	Н	L	-	-	-	L	-	٦ - ١	-]	-	Η	
CLO-5 : St	Strategically plan, organize, and execute Android app projects proficiently.				3	85	75		Н	Н	М	Н	L	-	-	-	L	-	-	-	_	-	-	

Durat	tion (hour)	15	15	15	15	15
	SLO-1	Getting started with android programming-Introduction	Understanding the component of a screen	Data persistence	Messaging and networking	Location based services
S-1 SLO-2		Understanding Android OS	Views and view groups	Saving and loading user preferences	SMS messaging	Displaying maps
S-2	SLO-1	Android versions and its feature set and Android architecture	Absolute layout, table layout, relative layout, frame and scrollview	Using getSharedPreferences() and getPreferences()	Sending SMS messages programmatically	Creating the project
5-2	SLO-2	Android devices in the market	Adapting to display orientation	Persisting data to files	Getting feedback after sending the message	Obtaining the maps API key
	SLO-1	Obtaining the required tools	Managing changes to screen orientation	Saving to internal storage	Sending SMS messages using intent	Displaying the map
8-3	SLO-2	Eclipse, Android SDK, Android Development Tools (ADT)	Persisting State Information during Changes in Configuration Detecting orientation changes, Controlling the orientation activity	Saving to external storage,	Receiving SMS messages, Updating an activity from Broadcast Receiver,	Displaying the Zoom control

S-4-5	SLO-1	Lab1: Login page creation with Toast message	Lab 4: implement implicit Intent	Lab 7: Student Registration form using Basic and List view	Lab 10: Shared preferences	Lab 13: Simulate paintbrush applications
	SLO - 2					
S-6	SLO-1	Creating Android Virtual Devices (AVD)	Creating the user interface programmatically, Listening for UI notifications	SQLite database	Invoking an activity from Broadcast Receiver	Changing views
5-0	SLO-2	Example: Creating android application	designing user interface using views	SQLite database Creating and using databases,	Example program: SMS messages	Satellite View
S-7	SLO-1	Anatomy of an Android Application and Real time applications	Basic views	Insert, display and delete	Sending E-mail	Navigating to a specific location
5-7	SLO-2	Understanding Activities	Picker views	Creating the DB Adapter helper class	Example: How to send email in android application	Adding markers
	SLO-1	Linking activities using intents	List views	Using the database programmatically	Networking	Getting the location that was touched
S-8	SLO-2	Resolving intent filter collision	Displaying pictures using Image View	Example: Add, retrieve, update, delete a contact	Binary data and Text data	Get coding and reverse geocoding, getting location data
S-9-10	SLO-1	Lab 2: Student registration form with Toast message	Lab 5: Implement Time Picker	Lab 8: Implement Context menu	Lab 11: Storing data to file in Internal storage	Lab 14: Draw an object
5-7-10	SLO-2					
<i></i>	SLO-1	Returning results from an intent	Using menus with views	Content providers	Downloading text files	Preparing for publishing APK files
S-11	SLO-2	Passing data using an intent object	Option menu, Context Menu	Sharing data in android using content provider	Example program for downloading textiles	Versioning, Digitally Signing Your Android Applications
	SLO-1	Implicit Intent	Example for menus with views	Predefined query string constants	downloading binary data	Deploying apk files
S-12	SLO-2	Explicit Intent	Some additional views-	Projections, Filtering, sorting	Example program for downloading binary data	Using adb.exe tool and web server
	SLO-1	Calling Built-in Applications Using Intent	Analog Clock view	Creating your own content providers	Accessing Web services	Publishing on the Android market
S-13	SLO-2	Understanding intent object	Digital Clock View	Using the content providers	Performing Asynchronous Calls	Creating a Developer Profile, Submitting Your Apps
S-14-	SLO-1	Lab3: Implement Explicit Intent	Lab 6: Implement Date Picker	Lab 9: Implement Option Menu	Lab 12: SQLite database	Lab 15: Implement WebView
15	SLO-2	1				

Learning Resources	1.WeiMeng Lee (2012), "Beginning Android Application Development", Wrox Publications (John Wiley, New York) (For 1 to 5 units).	 Ed Burnette (2010), "Hello Android: Introducing Google's Mobile Development Platform", The Pragmatic Publishers, 3rd edition, North Carolina USA Reto Meier (2012), "Professional Android 4 Application Development", Wrox Publications (John Wiley, New York). ZigurdMednieks, Laird Dornin, Blake Meike G, Masumi Nakamura (2011), "Programming Android: Java Programming for the New Generation of Mobile Devices", OReilly Media, USA
--------------------	--	---

Level	Bloom's Level of Thinking		Final Examination (50% weightage)										
_		CLA – 1 (10%)		CLA – 2 (10%)		CLA – .	3 (20%)	CLA – 4 (10%)#				
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
	Understand												
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
	Analyze												
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Create												
	Total	100) %	100) %	100) %	100	%	100	%		

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture	Dr.S. Gopinathan, Professor and Head, Department of Computer	Dr. P. Chanthini, Assistant Professor, SRMIST KTR
Drive, #13-26 Vision Exchange, Singapore, 608526	Science, University of Madras, Guindy Campus, Chennai – 600 025	

Course	urse Code PGI20D10J Course Name IOT Cloud Infrastructure and IOT Protocols			Cou	rse (latego	ory		D	Dis	scipli	ne El	ectiv	re Co	ourse	es	L 3	T 0	P 2	C 4			
	-	ite Courses		Co-requisite Courses	Nil		rogre	essive	Cour	ses	N	lil											
Course Of	Durse Offering Department Computer Applications Data Book / Codes/Standards					Nil																	
Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to,					Le	arnir	ng					Pro	gram 1	Learr	ning (Outco	mes	(PLC	C			
CLR-1 ·	LR-1 : Understanding cloud basics is vital for IoT.					1	2	3			2	3	4	5 6	7	8	9	10	11	12	13	14	15
CLR-2:						2	5			2	5	-	5 0	,	0		10	11	12	15	14	15	
						11						Se		e									
CLR-4 :						n)					;	oline		edg)								
CLR-5 :	Staying u	pdated with IoT tren	nds is essential for f	future readiness.		(Bloom)	y (%)	t (%)	-ope	out of the	- chrs	isci	00 D	no lwoi		Data		Skills	lls			or	
							enci	nen	1.00				nar	Zati Kn	හ	ot D	lls	Ski	Skills			avio	ng
Course Le	Course Learning Outcomes (CLO): At the end of this course,			learners will be able to:	Level of Thinking	Expected Proficiency	Expected Attainment	Europenatel Vacadas			Link with Related Disciplines	3	Skills in Specialization Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret	Investigative Skills	Problem Solving	Communication 3	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning	
CLO-1 :	CLO-1: Explain what cloud computing is and its importance in IoT.				2	85	80	Ν	1	-	-	- 1	- M	-	-	-	-	-	-	-	-	L	
CLO-2 :	COP2: Compare and select IoT protocols for different IoT applications.				3	85	80	1	ł	-	Н	Н		-	-	-	-	-	-	-	-	-	
CLO-3 :	LO-3 : Implement security measures for safeguarding IoT data in the cloud.				3	85	80		-]	H	М	Η		-	-	-	-	Н	-	-	-	-	
CLO-4 :	O-4 : Manage and integrate IoT devices with leading cloud platforms.				3	85	80		-	-	Η	Η	н -	-	-	-	-	-		-	-	-	
CLO-5 :	: Analyze emerging trends and research areas in IoT cloud infrastructure and protocols.			3	85	80		-]	Н	-	-	Н -	-	-	-	-	-	-	-	-	-		

	ration 10ur)	15	15	15	15	15
S-1				communication protocols	IoT Cloud :Security challenges in	Advanced Topics in IoT Cloud: Block chain technology for secure IoT transactions
	SLO-2		5	MQTT (Message Queuing Telemetry Transport): Overview and applications		IoT standards and interoperability
	SLO-1			· · · · · · · · · · · · · · · · · · ·	0 0 1	DevOps practices in IoT cloud deployments
S-2		5	Google Cloud IoT Core: Overview and capabilities	1		Continuous integration and continuous deployment (CI/CD) in IoT
S-3	SLO-1	11 1 0	1 5	AMQP (Advanced Message Queuing Protocol) in IoT	· · · · · · · · · · · · · · · · · · ·	Case studies of innovative IoT deployments

	SLO-2	Cloud-based IoT architecture	Device provisioning and management	Comparison of IoT protocols:	Data management strategies for IoT	Ethical considerations in IoT cloud
			on cloud platforms	Performance, scalability, and security	applications	deployments
	SLO-1	Lab1: MQTT Publisher: Develop a			Lab 10 : Integration with IoT	Lab 13: HTTP Server: Implement an
~ • •					Platforms: Integrate Node MCU	HTTP server on Raspberry Pi to
S-4 to		temperature, humidity) from Node		time sensor data from Node MCU to		receive sensor data from Node MCU
S-5					platforms (e.g., AWS IoT, Google	or other IoT devices and store it in a
		a cloud platform	1 5		Cloud IoT Core) to leverage their	cloud-based database.
					services for IoT applications.	
	SLO-1	Challenges in implementing IoT on cloud infrastructure	Message brokering and routing in cloud-based IoT solutions	protocol implementations	Data storage options: Databases, data lakes, and data warehouses	Privacy concerns in IoT cloud deployments
S - 6	SLO-2				Real-time data processing and analytics	
	SL0-2	Edge computing vs. cloud computing			in IoT cloud environments	infrastructure and protocols
	SLO-1	in IoT Fog computing and its role in IoT	services Integration of IoT devices with cloud		Data visualization and dashboards for	
	SLO-I	Fog computing and its role in lol	platforms		IoT applications	IoT ecosystem and industry trends
S-7	5102	Scalability and elasticity in cloud-based			Edge computing and its role in IoT	Challenges and opportunities in IoT
	SL0-2	IoT solutions	deployments	mechanisms in IoT	Edge computing and its role in 101	cloud deployments
	SLO-1		1 2		Serverless computing for IoT	IoT security regulations and compliance
	SLU-I	on cloud platforms	for security best practices		applications	for security regulations and compliance
S-8	SLO-2		Role-based access control (RBAC) in		Hybrid cloud architectures for IoT	Sustainable IoT cloud solutions
	SL0-2		IoT cloud environments	applications	deployments	Sustainable for cloud solutions
	SLO-1	Lab2: MQTT Subscriber: Create a			Lab 11: MQTT Publisher: Develop a	Lab 14: Data Logging to Cloud
	SL0-1	program to subscribe to MQTT		Node MCU with a cloud-based data		Storage: Write a Python script to log
S-9 to		topics on Node MCU			publish data from sensors connected	
S-10		topics on Node Mee			to GPIO pins to an MQTT broker	humidity) from Raspberry Pi to a
5-10			authentication mechanisms		hosted on a cloud platform	cloud-based storage service (e.g.,
					nosicu on a cioua planorin	Google Cloud Storage, AWS S3).
	SLO-1	Case studies of successful IoT	Real-time data processing and analytics	Data streaming and event processing in	Containerization and micro services in	Emerging technologies in IoT cloud
a		deployments on cloud infrastructure		IoT applications	IoT cloud solutions	infrastructure
S-11	SLO-2	Future trends in cloud-based IoT	Data encryption techniques for IoT	Implementing firmware updates over-	IoT platforms and frameworks for rapid	Industry partnerships and collaborations
			communication	the-air (OTA)	development	in IoT cloud deployments
	SLO-1	Ethical considerations in IoT cloud	Data visualization and dashboards for	Implementing RESTful APIs for IoT	Machine learning and AI in cloud-	Research directions in IoT cloud
G 10		deployments			based IoT solutions	infrastructure and protocols
S-12						
	SLO-2	Regulatory compliance in IoT cloud	11	5	Compliance, Governance, and Risk	Smart cities and urban IoT deployments
	SLO-2		11	5	Compliance, Governance, and Risk Management	Smart cities and urban IoT deployments
		Regulatory compliance in IoT cloud deployments	AWS IoT Greengrass	Message Queueing Protocol (MQP)	Management	1 2
		Regulatory compliance in IoT cloud	AWS IoT Greengrass	Message Queueing Protocol (MQP)	1 / /	Smart cities and urban IoT deployments IoT for environmental monitoring and sustainability
S-13	SLO-1	Regulatory compliance in IoT cloud deployments	AWS IoT Greengrass	Message Queueing Protocol (MQP) Message Queueing Telemetry Transport (MQTT)	Management Physical Security and Environmental	IoT for environmental monitoring and
	SLO-1	Regulatory compliance in IoT cloud deployments Cloud Service Deployment Models	AWS IoT Greengrass Azure IoT Edge Google Cloud IoT Edge	Message Queueing Protocol (MQP) Message Queueing Telemetry Transport (MQTT)	Management Physical Security and Environmental Controls	IoT for environmental monitoring and sustainability
	SLO-1 SLO-2	Regulatory compliance in IoT cloud deployments Cloud Service Deployment Models	AWS IoT Greengrass Azure IoT Edge Google Cloud IoT Edge	Message Queueing Protocol (MQP) Message Queueing Telemetry Transport (MQTT) Extensible Messaging and Presence	Management Physical Security and Environmental Controls IoT Endpoint Security	IoT for environmental monitoring and sustainability Wearable technology and healthcare
	SLO-1 SLO-2	Regulatory compliance in IoT cloud deployments Cloud Service Deployment Models IoT Edge Device Management	AWS IoT Greengrass Azure IoT Edge Google Cloud IoT Edge Lab 6: Cloud-triggered Actions:	Message Queueing Protocol (MQP) Message Queueing Telemetry Transport (MQTT) Extensible Messaging and Presence Protocol (XMPP) Lab 9: Device Shadowing:	Management Physical Security and Environmental Controls IoT Endpoint Security	IoT for environmental monitoring and sustainability Wearable technology and healthcare IoT applications
	SLO-1 SLO-2	Regulatory compliance in IoT cloud deployments Cloud Service Deployment Models IoT Edge Device Management Lab 3: HTTP Client: Implement an	AWS IoT Greengrass Azure IoT Edge Google Cloud IoT Edge Lab 6: Cloud-triggered Actions: Create a program on NodeMCU to perform specific actions (e.g., turn	Message Queueing Protocol (MQP) Message Queueing Telemetry Transport (MQTT) Extensible Messaging and Presence Protocol (XMPP) Lab 9: Device Shadowing: Implement device shadowing	Management Physical Security and Environmental Controls IoT Endpoint Security Lab 12: MQTT Subscriber: Create a	IoT for environmental monitoring and sustainability Wearable technology and healthcare IoT applications Lab 15: Real-time Data Analytics:
S-13	SLO-1 SLO-2	Regulatory compliance in IoT cloud deployments Cloud Service Deployment Models IoT Edge Device Management Lab 3: HTTP Client: Implement an HTTP client on NodeMCU to send	AWS IoT Greengrass Azure IoT Edge Google Cloud IoT Edge Lab 6: Cloud-triggered Actions: Create a program on NodeMCU to perform specific actions (e.g., turn	Message Queueing Protocol (MQP) Message Queueing Telemetry Transport (MQTT) Extensible Messaging and Presence Protocol (XMPP) Lab 9: Device Shadowing: Implement device shadowing functionality on NodeMCU to synchronize device states and	Management Physical Security and Environmental Controls IoT Endpoint Security Lab 12: MQTT Subscriber: Create a Python script to subscribe to MQTT	IoT for environmental monitoring and sustainability Wearable technology and healthcare IoT applications Lab 15: Real-time Data Analytics: Develop a Python script to perform
S-13 •	SLO-1 SLO-2	Regulatory compliance in IoT cloud deployments Cloud Service Deployment Models IoT Edge Device Management Lab 3: HTTP Client: Implement an HTTP client on NodeMCU to send	AWS IoT Greengrass Azure IoT Edge Google Cloud IoT Edge Lab 6: Cloud-triggered Actions: Create a program on NodeMCU to perform specific actions (e.g., turn	Message Queueing Protocol (MQP) Message Queueing Telemetry Transport (MQTT) Extensible Messaging and Presence Protocol (XMPP) Lab 9: Device Shadowing: Implement device shadowing functionality on NodeMCU to synchronize device states and	Management Physical Security and Environmental Controls IoT Endpoint Security Lab 12: MQTT Subscriber: Create a Python script to subscribe to MQTT topics on Raspberry Pi and take	IoT for environmental monitoring and sustainability Wearable technology and healthcare IoT applications Lab 15: Real-time Data Analytics: Develop a Python script to perform real-time analytics on sensor data
S-13 - S-14 to	SLO-1 SLO-2	Regulatory compliance in IoT cloud deployments Cloud Service Deployment Models IoT Edge Device Management Lab 3: HTTP Client: Implement an HTTP client on NodeMCU to send	AWS IoT Greengrass Azure IoT Edge Google Cloud IoT Edge Lab 6: Cloud-triggered Actions: Create a program on NodeMCU to perform specific actions (e.g., turn on/off an LED) based on commands	Message Queueing Protocol (MQP) Message Queueing Telemetry Transport (MQTT) Extensible Messaging and Presence Protocol (XMPP) Lab 9: Device Shadowing: Implement device shadowing functionality on NodeMCU to synchronize device states and	Management Physical Security and Environmental Controls IoT Endpoint Security Lab 12: MQTT Subscriber: Create a Python script to subscribe to MQTT topics on Raspberry Pi and take actions based on messages received	IoT for environmental monitoring and sustainability Wearable technology and healthcare IoT applications Lab 15: Real-time Data Analytics: Develop a Python script to perform real-time analytics on sensor data received from NodeMCU or other

Г

1. "Hands-On MQTT Programming with Python: Work with the lightweight IoT protocol in Python"

	1.	"Building the Internet of Things: Implement New Business Models,	by Gastón C. Hillar.	1
Learning Resources	2.	Disrupt Competitors, Transform Your Industry" by Maciej Kranz. "IoT Solutions in Microsoft's Azure IoT Suite: Data Acquisition and Analysis in the Real World" by Scott Klein, Manisha Yadav, and Nishith Pathak	 "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things" by David Hanes, Gonzalo Salgueiro, and Patrick Grossetete. 	
				J

Learning	Learning Assessment											
				Fi	Final Examination							
Level	Bloom's Level of Thinking	CLA ·	- 1 (10%)	CLA – 2 (10%)		CLA – 3 (20%)		CLA	A - 4 (10%) #	(50% weightage)		
	Timking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
T 11	Remember	200/	2004	1.50/	150/	1.50/	1.50/	150/	15%	2004	200/	
Level 1	Understand	20%	20%	15%	15%	15%	15%	15%	13%	20%	20%	
Level 2	Apply	20%	200/	20% 20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze		20%			20%	20%	20%		20%	20%	
Level 3	Evaluate	10%	10%	150/	15%	15%	150/	15%	15%	10%	10%	
Level 5	Create	10%		15%		13%	15%	13%	13%	10%	10%	
	Total	1	00 %		100 % 100 %		00 %		100 %	100 %		

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.L.SELVAM, Assistant Professor, SRMIST KTR							

VR project

FACULTY OF SCIENCE AND HUMANITIES SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Course	e Code	PGI20D11J	Course NameAugmented Reality and Virtual Reality for Game DevelopmentCourse Catego				itegor	gory D Discipline Elective Course L T						P 2	C 4										
	Pre-requisite Courses NIL Co-requisite Courses Nil Progres Course Offering Department Computer Applications Data Book / Codes/Standards Nil							ressive	Cours	ses	Ni	1									Ů				
	8																								
Course L	earning F	Rationale (CLR):	,	The purpose of learning th	of learning this course is to, Learning Program Learning Out							Outc	itcomes (PLO)												
CLR-1:	LR-1: Gain introductory experience in Unity Programming with C# 1 2					3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15				
CLR-2 : To provide a strong theoretical grip on AR technology							()	(%)	e							_									
CLR-3 :	Impleme	nt augmented real	ity apps from the de	eveloper's perception.				y (9	it (9	ledg	ept		lge	uo)ata		lls	lls			r		
CLR-4 :	Use Unit	y to efficiently cre	ate AR apps for Ar	ndroid, iOS, and Windows p	latforms		50	enc	nen	[MOI	onc	q	vled	zati		50	et L	lls	Ski	Ski			avio	ing	
CLR-5 :	Navigate	the Unreal Engine	e interface and unde	erstand its key features.			Thinking	fici	ainr	Kn	fC	late	NOU	ializ	lize	elin	rpr	Ski	ing	ion	ills		Beh	arni	
							hin	\Pr	Att	ntal	0 10	Re	al K	pec	Uti	lod	Inte	ive	olv	cat	l Sk		lal]	Le	
Course L	earning (hing Outcomes (CLO): At the end of this course, learners will be able to:				Expected Proficiency (%)	Expected Attainment (%)	Fundamental Knowledge	Application of Concepts	Link with Related	Procedural Knowledge	Skills in Specialization	Ability to Utilize	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning			
CLO-1 :	Discover	the potential of in	nmersive VR & AR	VR & AR				80	70							-	-	-	-	-					
CLO-2 :	CLO-2: Understand the techniques, processes, applications in immersive AR					3	85	75	Н	Н	-	М	L	-	-	-	-	-	-	-	-	-	-		
CLO-3 : Gain the Practical Understanding of Unity software						3	75	70	Μ	Μ	Μ	L	М	Н	М	-	-	-	-	-	-	-	-		
CLO-4 : Handle scripting and events using Unity					3	85	80	Μ	Н	-	L	М	Н	Н	-	-	Μ	-	-	-	-	-			
CLO-5 :	Gain a hi operation		nding of game engin	ne principles along with an	overview of the U	Unreal's basic	3	85	75	М	Н	М	L	Н	Н	L	-	-	L	-	-	-	-	-	
Durati	Duration (hour) 15 15			15		15						15													
	SLO-	1 Virtual Reali	y: An Overview	What is AR?		Unity for AR & VR			VR Scripting in Unity					Overview of Unreal Engine											
S-1	SLO-2	2 Introduction		Terminologies		Unity Interface						Setting up the Scripting Environment					Installing and Setting up Unrea Engine				al				
S-2	SLO-	History and T	Fech Developments			Create Gameplay			Create Gameplay		Create Gameplay		lay		Creating and Using Scripts				UI and Navigation						
5-2	SLO-2	2 Types of VR		Current AR Technologies Scenes, GameOb			ojects Instantiating Prefabs at runtime				Working with Unreal projects and templates				and										
6.2	SLO-	SLO-1 Pros and Cons of VR Hardware Prefabs, Layers		yers, Constr		s		Order of Execution for event functions					Unreal Editor Interface												
S-3	SLO-2			Lights, Cameras Builds	, Pub	lishir	ng	Ev	Event Functions					Content Browser											
a	SLO-	environment	p a VR developme using Unity :	nt Lab 4: Set up AR Fo ARKit Package	oundation &	Lab 7: Create a with a controlla	ble cl	iara	cter	rot	ates a	an ob	elop a ject (e.g.,	a spł	iere))	Lab 13: Create your first unreal engine project				real			
S-4-5	SLO -		evelopment tools, DKs, Set up a nev	v		(e.g., a cube) the forward, backw							tis wh in key												

right using keyboard input.

E).

8.4	SLO-1	Components of VR systems	AR Displays	Assets Workflow-Importing Assets	Coroutines	Assets and Packages
S-6	SLO-2	VR Software and Tools	Softwares	Assets Database	Namespaces	Working with Assets, Migrating Assets
~ -	SLO-1	VR Tracking Systems	AR Development tools	Asset Bundles	Attributes	Actors and Geometry
S-7	SLO-2	Comparing Immersive and Non- immersive VR UI	Benefits	Scripting with Assets	UnityEvents	Select, Place, Transform, Group,Snap and Merge Actors
G 0	SLO-1	Visual Perception of VR	Disadvantages	Introduction to 2D game development	Few important Classes in Unity	Components of Unreal: AI, Audio, Camera, Light Components
S-8	SLO-2	Acoustic Perception of VR	Examples of AR applications	2D Sorting	Unity Architecture	Components of Unreal: Rendering, Shape, Mesh and Widget components
S-9-10	SLO-1	Lab 2: Create a simple VR scene.	Lab 5: Creating and Scripting a Placement Indicator in Unity	Lab 8: Implement a script that allows the player to interact with objects in the scene (e.g.,	Lab 11: Implement a timer script that counts down from a specified time (e.g., 60 seconds)	Lab 14: create a simple environment, author basic materials, explore the lighting
	SLO-2			picking up and dropping objects, triggering events).	and displays the remaining time on the screen.	system, and add basic Landscape and Foliage to bring the scene to life.
G 44	SLO-1	Haptic Perception of VR	Gamification for Education5.0	Working with Sprites	Multiplayer	Levels-Work with Level Assets
S-11	SLO-2	How AR & VR works together?	AR games for Education	Tilemaps	Audio Files, Mixers. Profilers	Managing Multiple Levels
S-12	SLO-1	Impact of VR on Human Lives	General Software Tools for Gamification	Tilemaps Workflow	Video Overview	World Settings
5-12	SLO-2	Gesture Interaction in VR	AR Apps for Education	World Building	Animation Clips	Playing & Simulating
S-13	SLO-1	Enabling Technologies in VR	Multidisciplinary use of AR	Terrain & Tools	Animation Controllers	Building Virtual Worlds-Water, foliage, Fog Effects
5-15	SLO-2	Applications of VR	Future of AR in Education	Tree Editor	Playables API	Blueprint Visual Scripting
	SLO-1	Lab3: Experiment with different audio and visual effects for	Lab 6: Create an AR game by importing 3D objects	Lab 9: Design a simple user interface (UI) with buttons,	Lab 12: Create a script that controls the playback of	Lab 15: Create classes with Blueprints in Unreal Engine
S-14-15	SLO-2	immersive experience		sliders, and text elements to display information or control aspects of the game (e.g., health bar, score display).	animations on a character or object (e.g., idle, walk, jump).	

Learning Resources	[1] Alvin Albuero De Luna, " Introduction to Virtual Reality", Arcler Press, 2022	[4] Daniel Buckley, Morgan McKie, "AR Game Development for Beginners", Zenva Pvt Ltd 2020[5] https://docs.unrealengine.com/
	[2] Zeynep Tacgin,"Virtual and Augmented Reality", An Educational	
	Handbook, Cambridge Scholars Publishing, 2020	
	[3] P.Kaliraj, T.Devi, " Innovating with Augmented Reality, CRC Press,	
	2022	

Level	Bloom's Level of Thinking		Final Examination (50% weightage)									
	0	CLA –	1 (10%)	CLA –	2 (10%)	CLA –	3 (20%)	CLA – 4 (10%)#			
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
	Understand											
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
	Analyze											
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Create											
	Total	100) %	100)%	100 % 100 %		100 %		100 %		

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Mrs.M.Ramla, Assistant Professor, SRMIST KTR								

Course Code	PGI20D12J	Course Name	0	ve AI and Large Language lodels		Course ategory	D		Disc	pline	Spec	cific El	ective	Cou	rses		L 3	T 0	P 2	C 4
Pre-requisi Courses Course Offer	ite Nil ring Department	Computer	Co-requisite Courses Nil Applications	Data Book / Codes/Standards	Prog Co Nil	gressive ourses	Jil													
Course Lear (CLR):	ning Rationale	The purpos	e of learning this course is to:		Le	arning					Progr	ram Lea	rning	Outo	omes	(PLC	D)			
CLR-1 :	Understand the G	en AI and LLN	As		1	2 3	1		2	3 4	5	6	7	8 9	10	11	12	13 1	14	15
CLR-2 :	To acquire the bas																			
CLR-3 :	Gain foundational works	knowledge, p	ractical skills and functional und	lerstanding of how generative AI	(m	()	9	2		pline		edge								
CLR-4 :	To build applicati	ons using LLN	1s		(Bloom)	<u>گ</u>	2		ng l	sci	n n	Iwi		Data	s	s			.	
CLR-5 :	To impart knowle	dge of LLM				ncy ent	V nomlod co			Di Di	atio	Хnc		ĝ,	Skills	Skills			vio	හ
					ng	nm			5	ted	liza	se I	ing	ore	6	n S	s		ha	'n
Course Lear (CLO):	ning Outcomes	At the end	of this course, learners will be	able to:	Level of Thinking	Expected Proficiency (%) Expected Attainment (%)	T		Application of Concepts	Link with Related Disciplines Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge		Analyze, Interpret Investigative Shills	Problem Solving	Communication	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
CLO-1 :	Understand the ba					80 70	Ι	, I	ł	- H	L	-	-	- N	1 -	-	Η	-	-	-
CLO-2 :	To gain knowledg	e for developi	ng LLM applications		3	85 75	N	1 I	ł	L M	L	-	-	- N	1 -	-	Η	-	-	-
CLO-3 :	Implement and tra	uin a neural lar	iguage model		3	75 70	N	1 I	ł	- H	L	-	-	- N	1 L	-	Η	-	-	-
CLO-4 :	Explore technique	es for fine tunin	ng pre-trained language models		3	85 80	N	1 I	ł	- H	L	-	-	- N	1 L	-	Η	-	-	-
CLO-5 :	Understand how t	o apply LLMs	to a variety of applications		3	85 75	Ι	J	ł	- H	L	-	-	- N	1 L	-	Η	-	-	-

Durati	ion (hour)	15	15	15	15	15
S-1		Introduction to Language Model- Distributions over Strings		Large Language Models- Examples GPT-3, BERT, RoBERTa, BLOOM	Introduction to BERT	Introduction to BART
S-2	SLO-1 SLO-2	Global and Local Normalization	Recurrent Neural Language Models	GPT-3 Architecture	What is a Bidirectional encoder representations from Transformer (BERT)	Architecture of BART
		Tight Language Models Modeling Foundations	Human Language is not Context free	The need for Fine -tuning LLMs	BERT Training Phrases	
8-3	SLO-2	-Representation-based Language Models -Estimating a Language model from Data	General Results and Tightness	Benefits of Multitask instruction Fine Turning	Pretrain Fine tune	Pre-training
S-4 SLO-2 t		Lab 1: Write a python program to implement statistical language model.		I ah'/• (Lonorato toyt using	BERI model for	Lab 15: Write a python program for text generation using BART model.

		LAB: Write a python program to implement Finite State Machine for a traffic light				
	SLO-1	Classical Language Models		Fine-Tuning GPT-3 using the	How a BERT model can be	
8-6	SLO-2		Variations on Recurrent Networks Representational capacity of	OpenAI API and python LLMs Use Cases Code generation	reused for different purpose How can use a pre-trained BERT model?	Fine turning for Downstream Tasks Challenges and Limitations of BART Applications of BART
	SLO-1	Normalized Finite state Language	Transformer -based Language Models	PEFT- Parameter Efficient Fine	What can BERT do?	
S-7	SLO-2	Models Tightness of Finite-state Models	Informal Motivation of the Transformer Architecture	tuning Transfer learning		
	SLO-1	The n-gram Assumption and Sub	Definition of transformers Tightness of Transformer-based	Debugging and Documentation of		Comparison with other transformer Models like
S-8	SLO-2	Models	Language Models	code Question Answering	From Transformer Model to BERT	BERT, GPT, Multi-head Attention
	SLO-1	Lab 2: Write a python program	Lab 5: How to implement self-	Lab 8: How to generate text using LangChain and OpenAI		
S9 S10	SLO-2		attention mechanism in python using Numpy.	Lab 9: Text Summarization using	Lab 13: Chatbot and Virtual Assistance	Lab 16: Write a python program for auto texting using BART
	SLO-1	Pushdown language models	Introduction to LLM	Language Transfer		
S11	SLO-2			Content generation	Attention mechanism	Meta learning and Few-short Learning Adaptive Fine -tuning techniques
S12	SLO-1	Weighted Context free Grammars	Architecture of LLM Important components to influence	Language Translation	BERT Variants and Models	Domain adaptation
512	SLO-2		LLM architecture		BERT Variants and Models	
S13	SLO-1	Normalizing Weighted Context free Grammar		Advantages of LLMs	Fine turning BERT for Downstream Tasks ROBERTa: A Robustly optimized	Continual learning Lifelong Learning
	SLO-2	Push down automata Pushdown Language Models Multi-stack Pushdown Automata	Transformer Based LLM model Architecture	Difference between NLP and LLM Challenges in training LLMs	BERT Pretraining Approach ELECRA- Pre training text encoders as Discriminators Rather Than Generators	Adversarial training Transfer learning across languages
S14	SLO-1	Lab 3: Write a python program		Lab 10: Sentimental analysis	T - L - L - L - L - L - L - L - L - L -	Lab 17: Write a python program for text
S15	SLO-2	to implement nuchdown A null a plucation using (Inen A Land	using LLM	Lab 14: -Movie Prediction	summarization using BART model.	

		1.Formal Aspects of Language Modeling Ryan Cotterell,AnejSvete,ClaraMeister,Tianyu Liu and Li Du	2.Language Models for NLP" by Sebastian Ruder
--	--	---	---

LearningAss	essment												
	Bloom'sLevel			Continu	ousLearningAsses	sment(50%we	eightage)			FinalExamination(50%weightage)			
	ofThinking	CLA-	1(10%)	CLA	-2(10%)	CLA	-3(20%)	CLA-4	(10%)#	-			
	_	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level1	Remember	20%	2004	1.50/	1.50/	1.50/	1.50/	150/	1.50/	1.50/	1.50/		
	Understand		20%	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level3	Evaluate	100/	100/	1.50/	150/	1.50/	1.50/	150/	1.50/	1.50/	1.50/		
	Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
	Total	10	0%	1	00%	1	00%	10	0%		100%		

Course Designers		
ExpertsfromIndustry	ExpertsfromHigherTechnicalInstitutions	InternalExperts
	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.S.Lakshmi,SRMIST
	or madas, campas, chemia 000 020	

Course (Code	PGI20S02J	Course Name		in Generative AI with Open AI ogle Generative AI Studio)		Cours			S			Ski	ill Er	hance	ement	t Coı	ırses	5	-	L T 3 0	P 2	C 4
Pre-requis Courses	site	Nil	_	Co-requisite Nil Courses			rogre ourse	essive es		Jil													
Course Of	ffering	Department	Computer Applic	cations	Data Book / Codes/Standards	Ni	il																
Course Lea	arning F	Rationale (CLR):	The purpose of I	earning this course is to:	Lea	rning							Pro	gram	Learnir	ng Out	come	s (PL)	D)				
CLR-1: T	To unde	rstand the advance	topics of Generative A	AI		1 2	2 3	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 : T	To enhai	nce the concept of n	neta learning						je	s	plines			edge									
CLR-3 : T	To Learr	n about self-supervis	sed.			(m (%)	(%)		ledç	cept	isci	dge	ion	owle		Data		cills	Skills			ior	
CLR-4 : T	Fo know	about various doma	ain which used Gener	ative AI		Level of Thinking (Bloom) Expected Proficiency (%)	Attainment (%)		Fundamental Knowledge	of Concepts	with Related Disciplines	Procedural Knowledge	Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills		Skills		Professional Behavior	Learning
CLR-5 : T	To Learr	n about various conc	cept of Reinforcement	learning with Generative AI		Thin J Pro	Atta		enta	ion	n Re	ral		o Uti	Moo	Inte	ative	Sol	nica		s	ona	g Le
Course Los			At the and of this	s course, learners will be a	bla fa:	-evel of - Expected	Expected		dam	Application of	k witł	cedu	Skills in	lity to	lls in	ılyze,	estiga	blem	Communication	Analytical	ICT Skills	fessi	Life Long
	-	Dutcomes (CLO):							Fun	App	Link	Pro	Skil	Abi	Skil	Ana	NV NV	Pro	Co	Ana	CT	Pro	Life
CLO-1 : T	l o undei	rstand the architectu	are and functioning of	generative models.		2 80	0 8	5	H	Н	M	Н	-	-	M	L	-	-	-	-	-	-	-
CLO-2 : T	To Apply	generative AI mode	els to create text, ima	ges.		2 75	5 8	0	М	-	Н	L	М	-	М	L	-	-	М	-	-	-	-
CLO-3 : T	To Analy	ze the performance	of generative models	8.		2 85	5 8	0	М	L	М	L	L	-	М	М	-	-	М	-	-	-	-
CLO-4 : T	Fo Unde	rstand Meta model a	and Reinforcement Le	earning		2 80	0 7	5	М	Н	М	1	М		М		-		М		-		-+
CLO-5: T	To Unde	rstand the Integratio	on Generative Models	and RL		2 80	0 7	5	IVI	п Н	M	M	M	-	M	- M	-	-	H	-	-	-	-

]	Ouration (hour)	15	15 15		15	15
S-:	SLO-1	Overview of ChatGPT , Setting up an Account		Overview of fine-grained control and manipulation	Overview of meta learning applied to generative AI Meta-learning for optimization and adaptation of generative models	SARSA, and policy Gradients
5		Compare ChatGPT ,Search engine and Analytics		Significance across different domains such as robotics, computer vision, and natural language processing		Introduction to reinforcement learning applied to generative models.

S-2	SLO-1	The structure and constituents of ChatGPT.	Introduction to Multi-Modal Generative Models Overview of multi- modal data		Meta-learning with recurrent neural networks	Policy gradient methods for training generative models
5-2	SLO-2		Understanding the Challenges and opportunities multi-modal data	• •	Metric-based meta-learning for generative tasks	Exploration-exploitation trade-offs in RL, Exploration strategies for generative models.
	SLO-1		Overview of different types of multi- modal generative models	Low Level control Techniques – Overview	Transfer learning techniques for generative AI	Curiosity-driven exploration and intrinsic motivation
S-3	SLO-2		Traditional approaches vs. deep learning-based approaches		Few-shot learning with meta-learning approaches	Designing reward functions for generative models.
S-4 & S- 5	SLO-1 SLO-2	Fine-tuning GPT for Text Generation.	Application of multi-modal GANs		Adapt a generative model from MNIST to SVHN using meta- learning	Implement RL algorithm
			Variational Autoencoders (VAEs) for Multi-Modal Data,Basics of Variational Autoencoders (VAEs)		Meta-transfer learning and its applications in generative tasks	Intrinsic and extrinsic rewards in RL for generative models.
S-6	SLO-2	Fine tuning preprocessing	Extending VAEs for multi-modal data Training and sampling from multi- modal VAEs	Stata space and reinforcement learning	Meta-learning approaches for model selection and architecture search	Reward shaping and temporal credit assignment
S-7	SLO-1	Evaluate the fine-tuned models	Generative Adversarial Networks (GANs) for Multi-Modal Data Multi-modal extensions of GANs		Hyperparameter optimization with meta-learning techniques.	Adversarial training methods for generative models
	SLO-2		GANs		meta-reinforcement learning (meta- RL)	Adversarial attacks and defenses in R
S-8			Autoencoding Variational Bayes (AEVB) framework		Meta-RL for training adaptive and flexible generative models	Training generative models with adversarial objectives
	SLO-2	Historical context and development	Extensions for handling multi-modal data		Meta-RL algorithms and their applications in generative tasks	Training generative models with adversarial objectives
S-9 & S-			Applications using Autoencoding variantional Bayes	Develop fine grained control in 3D Printing	Develop applications using RLalgorithm	Implement Adversarial training methods
10	SLO-2		-			
S-11	SLO-1		Overview of Conditional Generative Models		Meta-learning approaches for domain adaptation in generative tasks	Introduction to multi-agent RL and its applications in generative modeling. Multi-agent coordination and competition
	SLO-2	Types of self-supervised learning tasks	Multi-modal conditional generative models	Multimodal Systems	Unsupervised domain adaptation with meta-learning techniques	Hierarchical RL approaches for generative models
	SLO-1		Deep Generative Models for Multi- Modal Learning Overview	Overview of meta-learning concepts	Cross-domain transfer learning with meta-learning	Transfer learning and meta-learning in hierarchical RL
S-12	SLO-2	Techniques for representation learning in self-supervised settings, Assessing the quality and effectiveness of acquired representations.	modal generative models	Types of meta-learning: model- agnostic meta-learning (MAML),	Overview of reinforcement learning concepts and terminology.	Exploration strategies in latent space for generative models.

	SI O 1	*	Assess the performance of generative models	0 0,		Improving sample efficiency in RL for generative models
S-13	SLO-1					Meta-learning and few-shot learning techniques.
	SLO-2		Challenges in evaluating multi-model generative models	Various domain applications	U U	Scaling up RL for large-scale generative modeling tasks
S-14	SLO-1	Implement image classification and	Generate an application using	Generate an application using Meta	Fine-tune a pre-trained transformer	Develop RL based generative models
8-14 &		retrieval using contrastive objectives	conditional generative models	learning	model on a few-shot text	using benchmark dataset
8-15	SLO-2	with ChatGPT			classification problem using a meta-	
5-15					learning approach.	

	An Introduction to Variational Autoencoders, <u>Diederik P. Kingma</u> , <u>Max Welling</u> · 2019	
	Reinforcement Learning With Open AI, TensorFlow and Keras Using Python	
Learning	By <u>Abhishek Nandy</u> , <u>Manisha Biswas</u> · 2017	
Resources	Getting Started with ChatGPT and AI Chatbots: An books.google.com > books, Mark Pesce	

Learning Asse	ssment											
	Bloom's Leve		rning Assessment	(50% weightage)					Final Examination 50% Weightage		
	Thinking	CLA –	1 (10%)	CLA -	2 (10%)	CLA –	3 (20%)	CLA –	4 (10%)#			
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
	Remember	10%	15%	10%	15%	10%	15%	10%	15%	10%	15%	
Level 1	Understand											
	Apply	10%	20%	10%	20%	10%	20%	10%	20%	10%	20%	
Level 2	Analyze											
x 10	Evaluate	20%	15%	20%	15%	20%	15%	20%	15%	20%	15%	
Level 3	Create											
	Total	10	0 %	10	0 %	10	0 %	10	0 %	10) %	

CLA-4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MooCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MooCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MooCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MooCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MooCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MooCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Projects, Case-Studies, Self-Study, MooCs, Certifications, Conf. Paperetc., Tech Talks, Mini-Paperetc., Tech Talks, Mini-Paperetc., Tech Talks, Mini-Paperetc., Tech Talks, Mini-Paperetc., Tec

Course Designers		
ExpertsfromIndustry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.S.Usha, Assistant Professor, SRMIST KTR

Course Code	PGI20AE2T	Course Name	Career Advancement	– II	Course	AE	Ability Enhancement Course	L	Т	Р	С
					Category			3	0	0	3
Pre-requisite Co	urses Nil		Co-requisite Courses	Nil		Progre	essive Courses Nil				
Course Offering	Department	Career Guidance	Cell	Data Book / Codes/Standard	s	Nil					

Course (CLR):	Learning Rationale	The purpose of learning this course is to,	L	earn	ing				Pro	ogra	m Le	earni	ing (Jutco	omes	(PL	(O)			
CLR-1 :	Demonstrate various prin	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
CLR-2 :																				
CLR-3 :	Critically evaluate basic combination, time and w	mathematical concepts related to mixtures and alligations, permutation and ork	E I					ines			ge									
CLR-4 :	Provide students with ski time, speed and distance	Ils necessary to generate and interpret data and concepts related to and blood relation.	(Bloom)	cy (%	nt (%	ledge	epts	iscipli	lge	uo	owled		ata		lls	lls			or	
CLR-5 :	Enable students to underst		 	ien	me	IOW]	onc	ЧD	vleč	zati	Kn	50	et D	lls	Skills	Skills			avio	ing
CLR-6 :		ents regarding the various concepts in quantitative aptitude and its importance in various competitive exams	Thinking	Profic	Attainment (%)	tal Kr	n of Concepts	Relate	Knov	eciali	Jtilize	odelin	Interpret Data	ve Skills	Solving	ation	Skills		al Beh	Learning
		-	of T	[pa		nen	atio	ith]	ura	n Sp	to l	n M		gati	n S	umic	ical	Skills	ion	Long]
Course I (CLO):	Learning Outcomes	At the end of this course, learners will be able to:	Level (Expected Proficiency (%)	Expected	Fundamental Knowledge	Application	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze,	Investigative	Problem	Communication	Analytical	ICT Sk	Professional Behavior	Life Lo
CLO-1 :	Understand, analyze and Interest.	solve questions based on Profit and Loss, Discount, Simple Interest and Compound		80	70	Н	Н	M	H	L	M	-	Н	-	H	-	Н	M	-	H
CLO-2 :	Create, solve, interpret an	3	80	75	Μ	Н	Μ	Н	-	М	-	Н	-	Н	-	Н	М	-	Н	
CLO-3 :	approach questions in a simpler and innovative method						Η	М	Н	-	М	-	Н	-	Η	-	Η	М	-	Н
CLO-4 :	O-4 : Understand the concept in Clock, Calendar, and Data in different forms and interpretations.					Μ	Η	Μ	Н	-	Μ	-	Η	-	Н	-	Η	М	-	Η
CLO-5 :						Μ	Η	Μ	Н	-	Μ	-	Η	-	Η	-	Η	Μ	- [Η
CLO-6:	Able to face different cor	3	80	70	Μ	Н	Μ	Н	-	М	-	Н	Н	М	-	Н	М	-	Н	

	uration (hour)	9	9 9		9	9
S-1		Percentage-Introduction	Time, Speed and Distance- Introduction	Problems on Trains	Clocks-Concepts Discussion	Logical Reasoning : Puzzles- Concepts
	SLO-2	•	Time, Speed and Distance- Basic problems	Problems on Trains	Clocks-Problems	Puzzles-Problems
S-2	SLO-1	Percentage - Problems	Time, Speed and Distance- Problems	Races & Games of Skill	Calendars-Introduction of basic concept	Puzzles-Problems

	SLO-2	Percentage - Tricky Problems	Time, Speed and Distance- Tricky problems	Races – Problems	Calendars-Problems	Puzzles- Tricky Problems
S-3	SLO-1	Discount – Basics	Time, Speed and Distance- Tricky problems	Area – Basics	Clock – Tricky Problems	Alphanumeric series - Introduction
	SLO-2	Discount – Problems	Time, Speed and Distance Advanced Problems	Area – Problems	Calendars – Tricky Problems	Alphanumeric series -Different types
S-4		Simple Interest-Introduction & Formulas	Height and distance - Introduction	Volume and Surface Area	Data sufficiency-Introduction and Basics	Alphanumeric series - Problems
	SLO-2	Simple Interest- Problems	Height and distance - Problems	Problems on Volume	Data sufficiency-Problems	Alphanumeric series - Tricky Problems
S-5	SLO-1	Simple Interest- Problems	Height and distance - Problems	Problems on Surface Area	Data sufficiency-Tricky Problems	Cube - Basics
		Simple Interest- Tricky Problems	Height and distance – Tricky Problems	Tricky problems on Area, Volume and Surface Area.	Data sufficiency-Advanced Problems	Cube - Problems
S-6		Compound Interest- Introduction & Formulas	Stocks and shares - Introduction	Geometry-Basics	Data Interpretation – Table	Cube – Tricky Problems
	SLO-2	Compound Interest- Problems	Stocks and shares -Basic problems	Geometry- Formulas	Data Interpretation – Table - Problems	Series – Odd one out- Introduction
S-7	SLO-1	Compound Interest- Problems	Stocks and shares - Problems	Geometry-Problems	Data Interpretation – Bar chart	Series – Odd one out - Problems
		Compound Interest-Tricky Problems	Stocks and shares - Tricky problems	Geometry – Tricky Problems	Data Interpretation – Bar chart - Problems	Series – Odd one out – Tricky Problems
S-8	SLO-1	Partnership – Fact and Formula	Stocks and shares - Tricky problems	Mensuration-Basics	Data Interpretation – Pie chart	Seating Arrangements - Linear
	SLO-2	Partnership – Problems	Problems based on ages - Introduction	Mensuration –Formulas	Data Interpretation – Pie chart - Problems	Seating Arrangements - Linear – Problems
S-9	SLO-1	Partnership – Problems	Problems based on ages - Basics	Mensuration – Problems	Data Interpretation – Line graph	Seating Arrangements – Circular
	SLO-2	Partnership – Tricky Problems	Problems based on ages – Tricky Problems	Mensuration - Tricky Problems	Data Interpretation – Line graph - Problems	Seating Arrangements – Circular – Problems

Learning Assessment	t				
Level	Bloom's Level of Thinking		Continuous Learning Ass	essment (100% weightage)	
		CLA-1 (20%)	CLA-2 (20%)	CLA-3 (30%)	CLA-4 (30%) ##
		Theory	Theory	Theory	Theory
Level 1	Remember	10%	10%	30%	15%
	Understand				
Level 2	Apply	50%	50%	40%	50%
	Analyze				
Level 3	Evaluate	40%	40%	30%	35%
	Create				
	Total	100 %	100 %	100 %	100 %

CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc.

CLA - 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. P. Chockalingam, Senior Lead Software Engineer, Virtusa Consulting Services Private Ltd, DLF IT Park SEZ,	Dr. G. Saravana Prabu, Asst. Professor, Department of English,	Dr. Sathish K, HOD, Department of Career Guidance Cell, FSH, SRMIST
Chennai - 600089	Amrita Vishwa Vidhyapeetham, Coimbatore - 641112	Dr. Aarthi S, Assistant Professor, Department of Career Guidance Cell, FSH, SRMIST

SEMESTER III

G	a 1					~	a				G					~	G			L	Т	Р	С
Course	Code	PGI20C07	J Course Name	Object Oriented Analysis and Design		Cour	se Ca	teg	ory		С	Р	rofe	SS101	nal (Jore	e Coi	urse		3	0	2	4
	Pre-requisite Courses Nil Co-requisite Courses Nil Jourse Offering Department Computer Applications Data Book / Codes/Standard							Cou	ırses]	Nil												
Course Le (CLR):	arning F	Rationale	The purpose of learnin	ng this course is to,	Le	arni	ng					Pro	ograr	n Le	arniı	ng O	utcor	mes (PLO))			
CLR-1:			amentals of object mode		1	2	3	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 : CLR-3 : CLR-4 : CLR-5 :	To desi To desi	ign with static U		*	of Thinking (Bloom)	ciency (%)	nment (%)		Knowledge	Concepts	ted	owledge	lization	ze Knowledge	ing	oret Data	kills	ıg Skills	n Skills	s		havior	ning
Course Le (CLO):	arning (Dutcomes	At the end of this co	urse, learners will be able to:	Level of Thinki	Expected Proficiency (%)	Expected Attainment (%)		Fundamental Knowledge	Application of Concepts	Link with Related	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	[CT Skills	Professional Behavior	Life Long Learning
CLO-1 :	Express	s software design	n with UML diagrams.		3	80			L	Η	Η	H		Μ	-	Н	М	Η	-	Η	-	-	-
CLO-2:	Design	software applica	ations using OO concept	is.	3	85	75		L	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
CLO-3 :	Identify	y various scenari	os based on software ree	quirements.	3	75	70		L	Η	Η	Η	Η	-	-	М	М	L	-	Н	-	-	-
CLO-4 :	Transfo	orm UML based	software design into pat	tern based design using design patterns	3	85	80		М	Н	Н	Н	Н	-	-	М	М	L	-	Н	-	-	-
CLO-5 :	Unders	tand the various	testing methodologies f	or OO software	3	75	70		L	Н	Н	Н	н	-	-	М	М	L	-	М	-	-	-

Dura	tion (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to OOAD with OO Basics	Class Diagram	2	GRASP: Designing objects with responsibilities	Object Oriented Methodologies
S-2	SLO-1	Unified Process	Elaboration – Domain Model	UML interaction diagrams	Creator – Information expert	Software Quality Assurance
S-3	SLO-1	UML diagrams-Basics	Finding conceptual classes	System sequence diagram- Basics	Low Coupling	Impact of object orientation on Testing

	SLO-2	UML diagrams	Finding description classes.	System sequence diagram	High Cohesion	Impact of object orientation on Testing - Feedback
S-4-S-5	SLO-1	Lab 1:Case study – the Next Gen POS system	Lab 4: Identify use cases	Lab7: Using the identified scenarios, find the interaction between objects and represent them using UML	Lab 10: Implement the system as per the detailed design.	Lab 13:Improve the reusability and maintainability of the software system
S-6	SLO-1	Use Case	Associations – Attributes	Collaboration diagram – When to use Communication Diagrams	Controller ,Design Patterns	Develop Test Cases and Test Plans
S-7	SLO-1	Inception -Use case Modelling	Domain model refinement	State machine diagram and Modelling –When to use State Diagrams	creational – factory method	APPLICATIONS-Satellite Based Navigation
S-8	SLO-1	Relating Use cases	Finding conceptual class Hierarchies	Activity diagram – When to use activity diagrams	Adapter – behavioural	Traffic Management
S-9-S10	SLO-1	Lab 2 :Identify a software system that needs to be developed.	Lab 5: Develop the Use Case mode	Lab 8:Sequence and Collaboration Diagrams.		-Lab 14 By applying appropriat tdesign patterns.
S-11	SLO-1	include, extend and generalization.	Aggregation and Composition	Implementation Diagrams - UML package diagram	Strategy – observer	Crypt Analysis
S-12	SLO-1	When to use Use-cases	- Relationship between sequence diagrams and use cases	When to use package diagrams - Component and Deployment Diagrams	Applying GoF design patterns	Weather Monitoring Station,
S-13	SLO-1	UML modeling tool	When to use Class Diagrams	When to use Component and Deployment diagrams	Mapping design to code	Vacation Tracking System.
S-14-15	SLO-1	Lab 3: Document the Software Requirements Specification (SRS) for the identified system.		and Activity Diagrams for the same		Lab 15: Implement the modified system and test it for various scenarios. SUGGESTED DOMAINS FOF MINI-PROJECT: 1.Passport automation system. 2. Book bank 3. Exam registration 4. Stock maintenance system. 5.Online course reservation system.

	1. Craig Larman, -Applying UML and Patterns: An Introduction to	1. Erich Gamma, and Richard Helm, Ralph Johnson, John Vlissides, -Design patterns: Elements	of
	Object-Oriented Analysis and Design and Iterative Developmentl, Third	Reusable Object-Oriented Softwarel, Addison-Wesley, 1995.	
Learning Resources	Edition, Pearson Education, 2005.	2. Martin Fowler,UML Distilled: A Brief Guide to the Standard Object Modeling Languagel, Th	hird
_	2. Ali Bahrami - Object Oriented Systems Development - McGraw Hill	edition, Addison Wesley, 2003.	
	International Edition – 1999.		

Learning As	sessment											
	Bloom's Level of	Bloom's Level of Continuous Learning Assessment (50% weightage)										
Level	Thinking	CLA –	1 (10%)	CLA –	2 (10%)	CLA –	3 (20%)	CLA – 4 (1	10%) #			
	_	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	20%	20%	
Level I	Understand	2078	2078	1370	1370	1370	1370	1370	1.5 %	2078	20%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	2070	2070	2070	2078	2078	2070	2070	20%	2078	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	10%	10%	
Level 3	Create	1070	1070	1,370	1.3 70	1.3.70	1.370	1 3 70	1 J 70	1070	10%	
	Total	100) %	100) %	100) %	100 %	6	100 9	%	

CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, Mini Talks, Group Discussions, Mock interviews, etc.

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26	Dr.S. Gopinathan, Professor and Head, Department of Computer Science,	
Vision Exchange, Singapore, 608526	University of Madras, Guindy Campus, Chennai – 600 025	Mr.D.B.Shanmugam, SRMIST, RMP
		-

Course	PGI20D13J	Course	Adaptive AI in Data Analytics and Pr	edicti	ive Modeling	Cou			D			Disci	inlin	e El	ectiv	e Co	ourse			Ι	LT	<u>'</u>]	P	С
Code		Name	;			Cate	gory						r							3	3 0		2	4
Pre-requ	uisite Courses	Nil	Co-requisite Course	es 1	Nil			P	rogre	ssive	Cours	ses	Nil									·		
Course Offe	ering Departmen	ıt	Computer Applications	Data	a Book / Codes/Sta	andards	N	il																
Course Lea	rning Rationale	(CLR): The	e purpose of learning this course is to,				Lea	rnir	ıg				Р	rogra	am L	earn	ing O	utco	mes	(PL)	0)			
CLR-1:	0		laptive AI and Predictive Analysis				1	2	3	1	2	3	4	5	6	7		9	10	<u> </u>		13	14	15
CLR-2 :	Familiarize abo	out the differen	ces between Generative AI and Adaptive AI									S			0						_			
CLR-3:	To study statist problems.	tical methods f	or hypotheses testing and solving inference				(Bloom)	(%)	(%	doe	ots	scipline	je je	u	wledge		ıta		s	s			•	
CLR-4:	To interpret th decisions from		vay that draws evidence-based and well-informed	1			ng (Blc	iency (ment (- 	Conce	ted Di	owledg	lizatio	ze Kno	ing	pret Da	kills	ıg Skill	n Skills	sl		chavior	Learning
CLR-5 :	To derive conc	lusions from d	ata and analyze its implications				of Thinking	Profic	Attain	ntal I	on of	ı Rela	al Kn	pecia	Utili	Model	Inter	live S	Solvir	icatio	l Skil	s	nal Bo	Lear
Course Lea	rning Outcomes	(CLO): At t	he end of this course, learners will be able to:				Level of 1	Expected Proficiency (%)	Expected Attainment (%)	Rundamental Knowledge	Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills	Communication	Analytical Skills	ICT Skills	Professional Behavior	Life Long
CLO-1 :	Understand the and properties		rametric model, point estimation of the paramete nator.	ers			2	85	80	Ι	, -	-	-	-	-	-	-	М	-	-	-	-	-	-
CLO-2 :	Conquer the co	oncept of interv	al estimation and confidence intervals.				3	85	80	N	1 H	Η	-	-	-	-	-	М	-	-	-	-	-	-
CLO-3 :	Analyze and po	erform large-sa	mple tests of hypotheses				3	85	80	-	Н	Η	Н	Η	-	-	М	М	-	-	-	-	-	-
CLO-4:	Discuss nonpar	rametric tests o	f hypotheses.				3	85	80	-	-	Н	Н	Μ	-	-	М	М	-	-	-	-	-	-
CLO-5 :	Translate and c	ate and correlate the statistical analysis into Statistical inference					3	85	80	-	-	Н	Н	Н	-	-	-	М	Н	-	-	-	-	-

Durat	tion (hour)	15	15	15	15	15		
S-1	SLO-1	Introduction to Adaptive AI	Introduction to predictive analytics	Propensity models,	Classification Trees and RuleBased Models	Methods for time series analyses – Analysis: Motivation		
	SLO-2			cluster models,	Model Evaluation Techniques.			
	SLO-1	Overview of Data	Business analytics: types,	collaborative filtering,	The Effect of Class			
S-2	SLO-2		5 51	applications and fundamental	Imbalance - Model Tuning	Exploratory analysis		

S-3	SLO-1	Importance of Adaptive AI in Model Improvement	Models: predictive models – descriptive	limitations. Statistical Modeling-	Alternate Cutoffs	Prediction and forecasting
	SLO-2	Practical Applications of Adaptive AI	models			and forecasting
	SLO-1			Lab 7: Understanding Predictive	Lab 10: Dealing with Missing	Lab 13: Measuring Performance in
			Lab 4: Implement Fraud Detection	Models	Values	Regression Models
S-4-5	SLO-2	Lab :1 Develop a Personalized Content Delivery System	IN Banking and finance	Identify and discuss examples of	Practice techniques for handling	Evaluate performance metrics for
	510-2	Content Denvery System		predictive, descriptive, and	missing data such as imputation or	various regression models using a
				decision models.	removal.	dataset.
	SLO-1	Ethical Considerations in AI and		Formal Definition, Model	Adjusting Prior	
S-6	SL0-1	Data Analytics	decision models - applications	Comparison	Probabilities	Classification
	SLO-2			Classification.	riodabilities	
S-7	SLO-1	Introduction to Supervised Learning Introduction to Unsupervised	analytical	Measuring Performance in Regression Models	Unequal Case Weights	Regression analysis
	SLO-2	Learning	techniques.	Linear Regression and Its Cousins		
	SLO-1	Introduction to Reinforcement	Data transformations: Individual			
S-8	SLO-2	Learning Exploring Neural Networks	predictors, Multiple predictors,	NonLinear Regression Models	Sampling Methods	Signal estimation
	SLO-1			Lab 8: Analytical Techniques	Lab 11: Model Tuning and Data	Lab 14: Implementing Linear
-		-	Lab 5: Implement adaptive AI	Overview	Splitting	Regression
S-9-10		Lab 2: Develop Intelligent	algorithms that can analyze student performance data, such as	Create a comparative analysis		
5-9-10	SLO-2	Tutoring Systems.	test scores and homework	chart highlighting different	Split datasets into training and	Implement linear regression and
			assignments	analytical techniques and their	testing sets, perform model tuning,	its variants (e.g., ridge, lasso) using
				applications.	and evaluate performance.	Python
S	SLO-1	Introduction to Data Preprocessing	Dealing with missing values,		Cost-Sensitive Training.	Segmentation.
11	SLO-2	Data Cleaning Techniques	Removing. Adding, Binning	Regression Trees and Rule-Based	Cost-Sensitive Training.	Models
11	SL0-2		Predictors,			Wodels
	SLO-1	Feature Selection Methods		Models Case Study:		
S-12	SI O 2	Feature Extraction Techniques	Computing, Model Tuning	Compressive Strength of Concrete	rete Measuring Predictor Importance	Autoregressive model
	SLO-2			Mixtures.		
S-13	SLO-1	Handling Missing Data	Data Splitting,			Partial autocorrelation function

	SLO-2	Handling Outliers	Resampling.	Classification Models - Discriminant Analysis and Other Linear - Non-Linear	Factors that can affect Model Performance.	
	SLO-1			Lab 9: Data Transformation	Lab 12: Cluster Model	
-		-	Lab 6: Implement adaptive AI	Techniques	Implementation	Lab 15: Regression Trees and Rule-Based Models
S-14-15	SLO-2		patterns and adjust traffic flow.	Implement data transformations for individual and multiple predictors using Python	I tilize chistering algorithms to	Build regression trees and rule- based models for a given dataset and compare their performance.
Learning	1. 2.		lied Predictive Modeling, 3rd Edition, ics using R, Simulation educators, Col	orado	Anasse Bari, Mohamed Chaouchi, Tor ummies, 2nd lition Wiley, 2016.	nmy Jung, Predictive Analytics for

Resources	Springs, 2044 and s-On Machine Learning with Scikit-Learn, Keras, and TensorFlowby Aurélien Géron	2. Daniel T.Larose and Chantal D.Larose, Data Mining and Predictive
	4. Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville	Analytics, 2nd
		edition Wiley, 2015.

Learning A	earning Assessment													
	Bloom's			Final Examination (50% weightage)										
Level	Level of	CLA	-1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA – 4	(10%)#					
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	ſ	15%	15%		
Level I	Understand	20%	2070	1370	1370	1,5 %	1.370	1.3 %	1370		1370	1370		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	ſ	20%	20%		
Level 2	Analyze	20%	2070	20%	20%	20%	2070	20%	2076		2076	2076		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%		15%	15%		
Level 3	Create	10%	10%	13%	13%	1.5%	1,3 %	13%	1.5 %		1.5%	13%		
	Total	1	00 %	100 % 100 %							100 %			

CLA - 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Mr D Siva Assistant Professor, SRMIST, RMP

Course Code	PGI20D14J	Course Name	Artificial Intelligence	and Machine Learning for Robotics	Cou Categ		D			Disc	ciplin	ne El	ectiv	ve Co	ours	e			L 1 3 ()			C 4
Pre-requ Course	es		Co-requisit Courses		U	gres ours	sive es	Nil														
Course O	Offering Departme	ent Compu	iter Applications	Data Book / Codes/Standa	rds Nil																	
Course L (CLR):	earning Rational	e The pu	rpose of learning this c	ourse is to,	L	earni	ing				Pro	gran	n Le	arni	ng C	Jutco	ome	s (Pl	LO)			
CLR-1	Introduce the fundation	mentals of	AI		1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2 U	Understand the app	lications of	artificial intelligence																			
CLR-3	Understand the bas	ic concepts	of machine learning.																			
CLR-4 (Generate knowledg	e about Rol	botics		-					lines			dge									
CLR-5 (:	Understand the Rol	oot operatin	g system fundamentals		(Bloon	ncy (%	nent (%	adadaa	ncepts	l Discip	ledge	ation	Knowle		t Data	S	Skills	Skills			vior	Jg
(CLO):	earning Outcome	At the o	end of this course, lear		Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Rundomentol Knowledge	Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving (Communication S	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
CLO-1 /	Apply the basic pri	nciples of A	AI in solutions that require	e Problem Solving	2	85	80	I	-	-	-	-	-	-	-	М	-	-	-	-	-	-
CLO-2	Recall the basics of	NLP for A	utomation		3	85	80	N	1 ^H	Η	-	-	-	-	-	М	-	-	-	-	-	-
CLO-3 (Construct the basic	s of Machin	ne Learning		3	85	80	-	H	Н	Н	Н	-	-	М	М	-	-	-	-	-	-
CLO-4	Assess and Apply s	uitable Mac	chine Learning Techniqu	es to different applications	3	85	80	-	-	Н	Н	М	-	-	М	М	-	-	-	-	-	-
CLO-5 U	Understand the fun	damental of	f Robotics programming	and development.	3	85	80	-	-	Н	Н	Н	-	-	-	М	Н	-	-	-	-	-

	ration our)	15	15	15	15	15
S-1	SLU-2	Problem solving and Scope of AI	Knowledge Representation Knowledge Representation issues	Introduction to Machine Learning	Supervised learning Regression: Linear regression	Introduction to Robotics Fundamentals of Robotics
	SLO-1	Introduction to Artificial Intelligence	first order predicate calculus	Data and Features	logistic regression	
S-2 SLO-2		Applications- Games, theorem proving, natural language processing, vision and speech processing, robotics, expert systems	Horn Clauses	Machine Learning Pipeline Data Preprocessing: Standardization	Classification: K-Nearest Neighbor	Robot Kinematics
		AI techniques- search knowledge, abstraction	Resolution	Normalization, Missing data problem		
S-3		Problem Solving State space	Semantic Nets,Frames	Data imbalance problem	Naïve Bayes, Decision Tree	Position Analysis
S-4-5	SLO-1 SLO-2	Lab :1. BFS using Python	Lab 4: program to implement A* Algorithm.	Lab 7: python program to import and export data using Pandas library functions	Lab 10: Implement Simple and Multiple Linear Regression Models.	Lab 13: Simulation using Adams View
S-6	SLO-1	Production systems, search space	Partitioned Nets	Data visualization - Setting up	Random Forest, Support Vector	Dynamic Analysis and Forces
3-0		control: depth-first, breadth-first search	Procedural Vs Declarative knowledge	training, development and test sets	Machine, Perceptron, Error analysis	Dynamic Analysis and Forces
S-7	SLO-1	Heuristic search	Forward Vs Backward Reasoning	Cross validation – Problem of	Unsupervised learning –	Robot Programming languages &
5-7	SLO-2		Understanding Natural Languages Introduction to NLP	Overfitting	Clustering: K-means, Hierarchical	systems
S-8		Hill climbing, best-first search,	Basics of Syntactic Processing	Bias Vs Variance - Evaluation	Spectral, subspace clustering,	Introduction, the three levels of
		branch and bound	Basics of Semantic Analysis	measures	Gaussian Mixture Model	robot programming
S-9-	SLO-1		Lab 5: Implementation of NLP to develop spellchecker	Lab 8: To develop face emotion	Lab 11: Develop Logistic	Lab 14: Simulation using Post
10	SLO-2	Lab 2: DFS using Python	application using python	recognition using python	Regression Model for a given dataset.	Processor
S	S SLO-1	Problem Reduction, Constraint	Basics of Parsing techniques	Different types of machine	Hidden Markov Model, Parameter	requirements of a robot
11		Satisfaction End	Context free and transformational grammars, Transition nets	learning	Estimation	programming language
S-12	SLO-1		Augmented transition nets			

	SLO-2	Means-End Analysis. LA* Algorithm	ISnanks Conceptual Dependency	Supervised learning, Unsupervised learning	MLE and Bayesian Estimate, Expectation Maximization	problems peculiar to robot programming languages.
	SLO-1	•	Scripts, Basics of grammar free analyzers	Reinforcement learning	Dimensionality Reduction Techniques, Principal component analysis	Analysis of Robot Programming
S-1	SLO-2		Basics of sentence generation, and Basics of translation	Generative Learning and adversarial learning	Linear Discriminant Analysis -	Language.
S-14 15		Lab 5: Tower of Hallot Using	Lab 6: To Generate random sentence using python	Lah Y. Obstacle avoiding robot	1 0	Lab 15: To develop pick and place robot using arduino

		1.E. Rich and K. Knight, "Artificial Intelligence", TMH, 3rd edition, 2017, ISBN:	 N.J. Nilsson, "Principles of AI", Narosa Publ. House, 1990. Massachusetts, 2012. Christopher M Bishop. Pattern Recognition
]	Learning	9780070087705.	and
_	Resources	2. 2. Kevin P. Murphey. Machine Learning, a probabilistic perspective. The MIT Press Cambridge	
		3. Tsuneo Yoshikawa, "Foundations of Robotics", PHI Publication.	publication.

	Bloom's		Final Examination										
Level	Level of	CLA -	- 1 (10%)	CLA –	2 (10%)	CLA -	- 3 (20%)	CLA – 4	(10%)#	(50% weightage)			
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	150/	15%	15%	15%	150/	150/	15%	15%		
Level 1	Understand	20%	20%	15%	1370	13%	13%	15%	15%	13%	13%		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
aval 2	Evaluate	10%	10%	15%	1.50/	15%	15%	15%	15%	150/	15%		
evel 3	Create	10%	10%	13%	15%	13%	13%	13%	13%	15%	13%		
	Total	1	00 %	10	0 %	1	00 %	100) %	10	0 %		

CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2	Dr.S. Gopinathan, Professor and Head, Department of Computer	Dr.V.Saravanan. Vice Principal(Academic), FSH, SRMIST, RMP
Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Science, University of Madras, Guindy Campus, Chennai - 600 025	Mr.A.Vignesh., Asst Professor-Computer Science and
		Applications, FSH, SRMIST, RMP

Course Code	PGI20D15J	Course Name	Full St	tack Development	Cour Categ		D		Discipline Elective Courses					L 3			Т 0	P 2	<u>С</u> 4			
Pre-requis Courses	site 5 Nil		Co-requisite Courses	Nil	Pro C	gres ours	sive es N	² Nil														
Course Off	ering Departmer	nt Com	puter Applications	Data Book / Codes/Standard	s Nil																	
Course Lea (CLR):	arning Rationale	The	purpose of learning this cou	rse is to,	L	earni	ing Program Learning Outcomes (PLO)															
CLR-1 : Le	arn fundamental J	avascript	concepts that power Angular.	JS.	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-1 : Learn fundamental Javascript concepts that power AngularJS. CLR-2 : Write quicker, better AngularJS code by discovering how AngularJS itself is built. CLR-3 : Realize the power of dependency injection, and how AngularJS accomplishes it CLR-4 : Identify and acquire knowledge in various security attacks, Services and Mechanism CLR-5 : Design custom directives and save time and energy with easily reusable components. Understand what a Single Page Application (SPA) is, and how they work. CLR-6 : Build a Single Page Application (SPA) in AngularJS. Be the coder that explains AngularJS to everyone else, because you understand it better than anyone else. Course Learning Outcomes				arJS accomplishes it Services and Mechanism sily reusable components. ow they work. e coder that explains AngularJS to	Level of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Fundamental Knowledge	Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
	nderstand the designed		le-page applications and how		2	85	년 80	E L	м Н		Б. L		•	S	- -	-	Е Н	-	·	Ĭ	<u> </u>	- IC
Pr		e model, [,]	view, and controller layers of	your application and implement them	3	85	80 M L H L M H					-	-	-								
CLO-3 : M	aster AngularJS e	xpression	s, filters, and scopes		3	85	80	M M H L L M H						-								
	uild Angular forms	-			3	85	80	Μ	Μ	Η	Η		-	-	-	М	Η	-	-	-	-	-
			your AngularJS applications		3						-	-										
CLO-6: W	rite AngularJS dir	ectives, U	Init test and end-to-end test yo	our AngularJS application																		

	iration hour)	15	15	15	15	15
S-1	SLO-1	Understanding the Basic Web Development Framework	JavaScript Fundamentals	Understanding the basics of Node.js	Overview of NoSQL databases and MongoDB	Building a single-page application with Angular: Foundations
	SLO-2	Development i runiework		Setting up Node.js environment	Installation and setup of MongoDB	Angular CLI.

S-2	SLO-1	Why learn the full stack?	Introduction to Document and Window Object	Installing Node.js and npm	CRUD operations: Create, Read, Update, Delete	Creating an Angular Project
02	SLO-2	User – Browser – Webserver	Objects - Generators	Creating and running a simple Node.js application	Data types in MongoDB	Components. Components Interaction. Dynamic Component
S-3	SLO-1	MVC Architecture	Advanced iteration- Modules	Exploring core modules such as fs, http, path, util, etc.	MongoDB Query Language	Angular Elements
	SLO-2	Single Page Application	DOM tree	Handling file system operations		Angular Forms.
S-4-	SLO-1	Lab :1 Write a program to create	Lab 4. Write a simple Node.js	Lab 7: Create different routes for		Lab 13: Create a Simple Login
5	SLO-2	a simple webpage using UTMI	script that outputs "Hello, World!" to the console.	handling HTTP GET requests using Express.	Lab 10: CRUD Operations:	form using R
S-6	SLO-1	, and the second s	Node properties	the http module	Data Modeling in MongoDB Understanding document-oriented	Template Driven Forms
	SLO-2	Introducing Node.js: The web server/platform	Browser events	Understanding the need for Express.js	data modeling	Property, Style, Class and Event Binding. Two-way Bindings
S-7	SLO-1	Introducing Express: The framework	Event delegation	Installing Express.js	Designing schemas and collections	Reactive Forms. Form Group. Form Controls. About Angular Router
		Introducing MongoDB: The database	UI Events	Creating a basic Express application		Router Configuration.
S-8		Introducing AngularJS: The front- end framework Designing a MEAN stack architecture	Forms, controls	Routing in Express	Embedded vs. referenced documents	Router State
S-9-	SLO-1	Lab 2: . Write a program to create		Lab 8: Write middleware functions		Lab 14: .Making HTTP requests
5-9- 10	5102	a website using HTML CSS and JavaScript	Lab 5: To-Do-Liat Application	to log requests, handle errors, and	Lab 11 Query Language:	from Angular to an API
10	SL0-2			parse request bodies		
S		A Common MEAN stack architecture	Document and resource loading	Middleware concept and	Relationships and denormalization	Navigation Pages. Router Link
11	SLO-2	Designing a flexible MEAN architecture	Document and resource toading	Implementation	Relationships and denominalization	Navigation Lages. Router Link
S-12	SLO-1	. Introducing AngularJS: The front-	Mutation observer - Event loop	Exploring built-in middleware in Express	Integration with Node.js Connecting MongoDB with Node.js	Query Parameters. URL matching
	SLO-2	end framework	initiation observer - Event loop	Implementing custom middleware	applications	Matching Strategies-Services Dependency Injection
S-13	SLO-1	How the MEAN stack components	•	Introduction to template engines (e.g., EJS, Pug)	Performing CRUD operations using the MongoDB Node.js driver	

	SLO-2	work together		Express	The rules of a REST API	Http Client. Read Data from the Server. Http Header Operations. Intercepting requests and responses
14		Lab 3:.Write a program to build a Chat module using HTML CSS and JavaScript.	a voting application using Angular JS	Lab 9: Write middleware functions to log requests, handle errors, and parse request bodies.	Lab 12: Writing a REST API" Exposing theMongoDB database to theapplication	Lab 15: More complex views and routing parameters

Learning	1.Resources Text Book: Getting MEAN with Mongo, Express Angular and Node, Simon Holmes 2.Practical Node JS: Building a Real-World Scale Web Apps, Basarat Syed, A Press, 2014.	Reference Book: 1. MEAN Web Development, AMOS Q. HAVIV 2. AngularJS: https://angular.io/docs
Resources	3.Learning Angular JS: A Guide to Angular JS Development, Ken Williamson, O'	3. MongoDB: https://docs.mongodb.com/manual/tutorial/getting- started/

Learning A	Assessment												
	Bloom's		Continuous Learning Assessment (50% weightage)										
Level	Level of	CLA	- 1 (10%)	CLA –	CLA – 2 (10%)		- 3 (20%)	CLA – 4	(10%)#	(50% weightage)			
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level I	Understand	20%	20%	13%	1370	1370	13%	13%	13%	13%	13%		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 2	Analyze	2070	2070		2070	20%	2070	2070	2070	2070	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 5	Create	10%	10%	13%	13%	13%	13%	13%	13%	13%	13%		
	Total	1	00 %	10	0 %	1		100 %					

CLA - 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.V.Pavithra (AP/MCA)SRMIST RMP

Course Code	PGI20D16J	Course Name	ІоТ	Devices with	Computer V	ision Technologies		Cour Categ		D		Discipline Elective Courses $\begin{array}{c c} L & T \\ \hline 3 & 0 \end{array}$						_	-	C 4					
Cours				Co-requisite Courses				C	gres: ours	essive rses Nil															
Course (Offering Department	nt Comp	uter Applica	ntions	Da	ata Book / Codes/Sta	andards	Nil																	
Course I (CLR):	earning Rationale	The pu	irpose of lea	rning this cou	rse is to			Le	earni	ing]	Prog	am I	earn	ing (Outco	omes	(PL	0)			
CLR-1:	To introduce Interne	et of Things	(IoT) enviro	onment and its to	echnologies fo	or designing smart sys	stems	1	2	3		1	2	3 4	4 5	6	7	8	9	10	11	12	13	14	15
CLR-1 : To introduce Internet of Things (IoT) environment and its technologies for designing smart systems CLR-2 : Explore the system management and domain for various applications of IoT CLR-3 : Inculcate the various protocols that are used for developing IoT applications. CLR-3 : Inculcate the fundamentals of computer vision CLR-4 : To teach the functions of a Computer vision techniques involved in training the CLR-5 : Build intelligent and automated real-world Computer vision applications CLR-5 : Build intelligent and automated real-world Computer vision applications								Level of Thinking	Expected Proficiency	Expected Attainment	-	Fundamental Knowledge		Link with Kelated	Procedural Knowledge Skills in Snecialization	Ability to Utilize	Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	CT Skills	Professional Behavior	Life Long Learning
(CLO):				course, learner					E S	EX	-		~ .			~ ~		An	Inv	Pr	చ	An	ы	Ľ	Lii
	Investigate various devices	challenges a	and explore o	ppen-source har	dware prototy	ping platforms for de	signing IoT	2	85	80		L	М	LN	M N	[-	Н	-	М	-	-	-	-	-	-
	Understand basic ci interface with the re		ors and interfa	acing, data con	version proces	s and shield libraries	to	3	85	80	-	М	Н	H	- H	-	Н	-	М	-	-	-	-	-	-
CLO-3:	Understanding the f	undamental	concepts of	Computer visio	n			3	85	80		Μ	Η	H I	H H	[_	-	Μ	Μ	-	-	-	-	-	-
	Gain hands-on solid							3	85	80		Η	-	H I	H N	[-	Μ	Μ	Μ	-	-	-	-	-	-
CLO-5 :	Expertise in Data ga components. Apply	thering, Da	ta collection, omputer visio	, Model training on techniques to	g, and model e o real -world i	valuation with domai ndustry problems	in-specific	3	85	80		М	-	H	H	-	М	-	М	Н	-	-	-	-	-

	ration 10ur)	15	15	15	15	15
S-1	SLO-1	Introduction to IoT	Communication Models in IoT	Computer Vision -Introduction	Computer Vision Workflow Steps	Computer Vision Techniques an Overview
	SLO-2	Definition& Characteristics of IoT	Device to Device Model	Computer Vision Overview Business Problem Identificat		Image Processing
S-2	SLO-1	Physical design of IoT Things in IoT		Computer Vision defined from academic perspective	Success Criteria Definition	Image Processing Techniques

						Image Restoration, Linear
			M2M,Differences between IoT and	Computer Vision defined from		Filtering, Independent
	SLO-2	IoT protocols	M2M	Industry perspective	Right Computer Vision Techniques	Component Analysis,
						Pixelation
						Challenges and opportunities in
	SLO-1	logical Design of IoT	Architecture of M2M	Signal Processing for Computer Vision	Collect Training Data	integrating IoT with computer vision
S-3						Overview of edge computing and its
	SLO-2	IoT Functional Blocks	SoftwareDefinedNetworking (SDN) SDN, Architecture of SDN	Pattern recognition of Computer Vision	Label Train and Test Datasets	role in IoT
	SLO-1	Lab :1 Explain working of	Lab 4: Describe gateway	Lab 7: Install OpenCV Displaying		Lab 13: Image Edge Detection
S-4-5	SLO-2	Raspberry Pi.	as a service deployment in Iot toolkit	images OpenCV	Lab 10: Text in Images	OpenCV
			Network Function			
	SLO-1	IoT Levels and Deployment Templates	Virtualization (NFV), Architecture of	Challenges of Computer Vision	Train the computer vision model	Median Filter
S-6			NFV			
	SLO-2	Levels 0, Levels 1	NFV for IOT, YANG - NETCONF	Computer Vision Data Requirements	Evaluate the computer vision model	Feature detection and matching
			IoT System Management.Advantages			
	SLO-1	Levels 2, Levels 3	and	How much data is needed	Test the model	Security challenges in IoT
	~	Levels 2, Levels 5	Disadvantages of IoT	How much data is needed		deployments
S-7			system management			
			NETCONF, YANG and			Secure communication protocols and
	SLO-2	Level 4, Level 5	NETOPEER	Is your data good enough?	Deploy the model	encryption techniques
			IoT Systems and Device			Decklasse that Comments Mark
	SLO-1	IoT Deployment Challenges	Management with	Data Structure	Iterate the steps process	Problems that Computer Vision can
S-8			NETCONF-YANG			Solve
5-0			Purpose & Requirements,			
	SLO-2	-	process model specification,	Data Format	Computer vision architecture	Text Classification
			domain model specification			

S-9-	SLO-1	Lab 2: Controlling LED with	Lab 5: Weather Monitoring	Lab 8: Reading &Writing images	Lab 11: Color Space OpenCV	Lab 14: Image Scaling & Rotation
10	SLO-2	Raspberry Pi	System	OpenCV	Thresholding OpenCV	using OpenCV
			Information model			Privacy concerns in computer vision
	SLO-1	Home, Cities	specifications, service	Data Type	Data Ingestion	applications
5-11		Tionic, Cittes	specifications, Iot level			
			specifications			
	SI 0.2	Environment, Energy systems	Functional view specifications,	Training Data	Data Pre-processing	Implementing secure communication
	510-2	Livitoinient, Energy systems	operational view specifications		Data Tre-processing	for IoT devices
			Device & component			Introduction to edge devices:
	GL Q 1		1	Validation Data		Raspberry Pi, Arduino, NVIDIA
	SL0-1	Industry			Multiprocessing	Jetson Nano
S-12			development			
-						Hands-on exercises: Implementing
	SLO-2	Agriculture	IoT System for Agricultur	Test Data	Transfer Learning/Model	secure communication for IoT devices
		-			Processing	
					-	Hands-on exercises: Setting up an edg
	SLO-1	Health and Lifestyle	Functional view specifications,	Image Processing	Data Transformation	device, installing OpenCV
			operational view specifications	Techniques		
5-13			IoT Security and Interoperability,	Filtering Techniques in Image		Hands-on exercises: Implementing
	SLO-2	IoT components	Risks and Attacks&Tools for	Processing Linsear Filter, Non-Linear	Popular Computer Vision frameworks:	object detection on IoT devices
	~	1	Security	Filter	OpenCV, TensorFlow, Matlab	
	SLO 1		~			
5-14-	SL0-1	Lab 3: Interfacing Light Sensor with Raspberry	Lab 6: IoT based Soil Moisture	Lab 9: Draw a Rectangle	Lab 12: Finding Contours	Lab 15: Image Translation OpenCV
15	SLO-2	pi	Monitoring Device	Draw a Circle	0	Image Filtering OpenCV
				1		l
	1	. ArshdeepBahga and Vijay Madisetti, "	Internet of Things - A Hands-on Appro	oach", Universities Press, 2015.	5. Computer Vision: Algorithms and Ap	plications by Richard Szeliski.
earni	2	2. Adrian McEwen, Hakim Cassimally, "		ey, 2014.	Available for free online. 6. Computer Vision: A Modern Approac	h (Second Edition) by David Forsyth

	 K. Jain, K. Kasturi, and B. G. Schunck, Machine Vision, McGraw-Hill, Inc. 1995. Digital Image Processing and Analysis: Application with MATLAB and CVIPtools, 3rd Edition, SE 	6. Computer Vision: A Modern Approach (Second Edition) by David Forsyth and Jean Ponce. Available for free online.
	Umbaugh, Taylor&Francis/CRC Press, 2018	7. CunoPfister, "Getting Started with the Internet of Things", O'Reilly, 2011.

Learning A	ssessment													
	Bloom's			Contin	uous Learning	Assessment (50)% weightage)			Fin	al Exa	mination		
Level			- 1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA – 4	(10%)#	(5	(50% weightage)			
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theo	ry	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%		15%		
Level I	Understand	2070	2070	1370	1370	1370	1570	1370	1370	137	,	1370		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%		20%		
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	207	,	2070		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%		15%		
Level 3	Create	1070	1070	1570	1570	1570	1570	1370	1370	157	,	1370		
	Total	1	00 %	100) %	1	00 %	100	%		100 %			

CLA - 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist,	Dr.S. Gopinathan, Professor and Head, Department of Computer Science,	Dr.N.Vijayalakshmi, Asst.Prof(Sr.G), SRMIST, RMP
DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange,	University of Madras, Guindy Campus, Chennai – 600 025	Dr J Dhilipan, Professor & Head, SRMIST, RMP
Singapore, 608526		Mrs.S.Sindhu, Asst.Prof(OG), SRMIST, RMP

Сот	ırse Co	de PGI20D17J	Course Na	me Computer	· Vision i	n Smart Robotics		Сот	ırse (Catego	ory	D	Ι	Discij	pline	Eleo	ctive	Сог	irse	L 3			P 2	C 4
																				3	()	2	4
	Pre-requ	uisite Courses Nil		Co-requisite Courses	Nil		P	rogr	essive	Cours	es	Nil												
Cours	e Offeri	ng Department Com	puter Applicat	ions	Data Bo	ok / Codes/Standards	Nil																	
Cours (CLR		ing Rationale The	purpose of lear	ning this course is to,			Lea	arnir	g				Р	rogra	am Le	earni	ng O	utco	mes (PLC))			
CLR-1	I: To	o understand the basic prin	ciples of compu	ter vision and its application	ns in robot	ics.	1	2	3			2 3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2				e processing and feature ext														-				-		
CLR-3 CLR-4											adna	spus iscinlin	06		owledg		ata		sll	ls			r	I
CLR-	5 : Aj	Apply image processing techniques to enhance images for robotic perception.							inmen			Collict	howled	alizatio	ize Kno	ling	pret D	skills	ng Ski	on Skil	lls		ehavio	rning
CLR-6	CLR-6 : Implement feature extraction algorithms for object detection and recognition.					hink	Prof	Atta	-			K	peci	Ctili	Iode	nter	ve S	olvi	catio	Ski		al B	Lea	
(CLO	Course Learning Outcomes (CLO): At the end of this course, learners will be able to:						Level of Thinking (Bloom)	Ľ.	Expected Attainment (%)			Application of Concepts I ink with Related Disciplines				Skills in Modeling	Analyze, Interpret Data	Investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
CLO-				les of computer vision and i			3	80	70	1	II	H H	H	Н	М	-	Η	Μ	М	-	Н	Η	-	Η
CLO-2		pply image processing tech r robotic perception.	iniques such as i	filtering, segmentation, and	feature ex	traction to process images	3	85	75	N	4 N	A H	H	Н	-	-	М	М	М	-	Η	М	-	L
CLO-	111.			tasks such as object detectio			3	75	70	N	4 N					-	Μ	М	L	-	Н	М	-	Н
CLO-4				nms using libraries such as C			3	85	80	I	łł	H H	H	Н	М	-	Μ	L	Η	М	Η	М	-	-
CLO-:		tegrate computer vision sy enarios.	stems with robo	tic platforms and demonstra	te their fu	nctionality in real-world	3	75	70	1	łł	H H	Н	Н	L	-	М	Н	L	L	Н	-	L	-
CLO-	5: De	esign and implement visua	l tracking algori	thms for robotic systems.			3	85	80]	J	H H	H	Η	М	-	Μ	Μ	L	Η	Η	-	L	-
	ation	15	1	5		15			15							1	5							
S-1	SLO-1	Computer Vision - Introdu	uction II	ntroduction on Image Acqui	sition	Techniques for object detection images and videos	ction i	in			luction to Scene Understandin racking in Robotics						cene Reason roade lecisio	ning: er cor	Undentext f	ersta for m	nding	g scei	nes ii	
	SLO-2	Computer Vision Overvie	337	nage Acquisition Technique	es in	Object recognition and clas techniques	ssifica	tion		isor Fu I Traci		for S	cene U	Jnder	stand	ing V T	/ision Techn	-base	ed Hu for r	ıman obot	s to ı	inder	stand	
S-2	SLO-1	Computer Vision defined academic perspective	from II	nage preprocessing Technic	ques	Feature Extraction Techniq Object Detection	jues fo	For Deep Learning Approaches for Scene Understanding Visual Servoing: Using visual fe to control the robot's motion or manipulation tasks.							feedł	oack								

	SLO-2	Computer Vision defined from Industry perspective	Need of Image preprocessing techniques in computer vision	Convolutional Neural Networks (CNNs) for Object Detection	Semantic Segmentation for Scene Understanding	Robust Vision Systems for Dynamic Environments: Dealing with challenges like lighting changes, moving objects, etc.
S-3	SLO-1	Challenges of Computer Vision	Noise reduction, image enhancement, and filtering methods	Region-Based CNNs for Object Detection	Object Tracking Techniques in Robotics Multi-Object Tracking in Dynamic Environments	Multi-Modal Sensor Fusion: Integrating vision with other sensor modalities for better perception.
5-5	SLO-2	Computer Vision Data Requirements	Basics of image processing and computer vision algorithms	You Only Look Once (YOLO) Algorithm for Object Detection	Visual SLAM (Simultaneous Localization and Mapping) for Scene Understanding	Learning-based Visual Navigation: Using machine learning to improve robot navigation based on visual inputs.
S-4to S-5		Lab 1-Install OpenCV Displaying images OpenCV	Lab 4:Morphological Operations Opening OpenCV Morphological Operations Closing OpenCV	Lab 7: Object Detection -Use a pre- trained object detection model (e.g., YOLO, SSD) to detect objects in a video stream and draw bounding boxes around them.	Lab 10: Motion Estimation Implement a basic optical flow algorithm to estimate the motion of objects in a video stream.	Lab 13:Moving Object Detection and Tracking: Develop a vision-based system to detect and track moving objects in a dynamic environment.
S-6	SLO-1	Computer Vision Development Hardware and Software Requirements	Deep Learning for Computer Vision and Machine learning for Computer vision	Single Shot Multibox Detector (SSD) for Object Detection	3D Scene Understanding for Robotics Contextual Understanding in Scene Analysis	Vision-based Object Manipulation: Techniques for robots to manipulate objects based on visual cues.
~ -	SLO-1	Building a Computer Vision Hardware system		Mask R-CNN for Object Detection and Instance Segmentation	Scene Understanding for Human-Rbot Interaction	Visual SLAM in Dynamic Environments: Handling moving objects and changing scenes in SLAM. 1.
S-7	SLO-2	Choosing the software components	Overview of computer vision in robotics	Transfer Learning for Object Detection in Robotics	Real-Time Scene Understanding and Tracking	Vision-based Localization in GPS- denied Environments: Localizing robots using vision when GPS is unavailable.
S-8	SLO-1		robotics	smart Data Augmentation Techniques for Scene Understanding for Autonom Object Detection Navigation		Vision-based Obstacle Avoidance: Using vision to detect and avoid obstacles in the robot's path.
		Computer Vision Workflow Steps	Integration of Computer Vision and Robotics: Applications of computer vision in robotic systems, such as navigation, manipulation, and perception.	Real-Time Object Detection in Robotics	Environmental Modeling for Scene Understanding	Deep Reinforcement Learning for Vision-based Robotics: Using deep RL to train robots for various vision tasks.
	SLO-1					

S-9 to S-10	SLO-2	Lab 2: Reading & Writing Images Open CV	Lab 5: Image Acquisition and Display: Write a program to capture images from a camera and display them on a screen using OpenCV or a similar library. Lab 8: Object Tracking-Implement a basic object tracking algorithm (e.g., KLT tracker) to track a moving object in a video stream. Machine		different scenes (e.g., indoor, outdoor, kitchen, bedroom), build a classifier	Lab 14:Event Detection in Surveillance Videos: Develop a system to detect events of interest in surveillance videos.
	SLO-1	What is a Computer vision framework? Features of a computer vison framework	Calibration of cameras and sensors for robotic applications	Multi-Object Tracking in Robotics	Machine Learning for Adaptive Scene Understanding Probabilistic Models for Scene	Event-based Vision for Robotics: Utilizing event-based cameras for high- speed, low-latency vision tasks.
S-11	5102	Introduction to popular libraries and frameworks (e.g., OpenCV, TensorFlow, PyTorch)	Image filtering and enhancement techniques	Environments (e.g., low light,	Scene Understanding in Challenging Conditions (e.g., adverse weather, low light)	Robotic Vision in Extreme Environments: Applying vision in challenging conditions like underwater or space robotics.
S-12	SLO-1	Basics of image processing	Feature extraction methods (e.g.,		Understanding in Robotics	Future Trends in Computer Vision for Robotics: Discussing emerging technologies and their potential impact on smart robotics.
	SLO-2	Basics of computer vision algorithms		Semanne Segmentation for Sejeet	Wettes for scene Understanding	Challenges and Limitations of Vision- based Robotics: Examining current limitations and areas for improvement in vision-based systems.
S-13	SLO-1	What is a Computer vision model?	Traditional methods for object detection (e.g., Haar cascades, HOG)		Future Trends in Scene Understanding and Tracking in Robotics	Integration of Computer Vision with Other Technologies: Exploring how vision can be combined with AI, IoT, and other technologies to enhance robotics.
	SL (U-2	D-2 Train &Evaluate the computer Vision Introduction to deep learning for object detection		5	Ethical Considerations in Scene Understanding and Tracking	Ethical Considerations in Vision-based Robotics: Addressing ethical issues related to privacy, bias, and decision- making in autonomous systems.
S-14 to S-15		Thresholding OpenCV Lab 6:Color Detection: Implement a simple color detection algorithm to detect and track objects of a specific color in a video stream.		algorithm to label each pixel in an	Lab 15:Underwater Object Detection: Develop a vision-based system to detect objects underwater.	

Г

FACULTY OF SCIENCE AND HUMANITIES SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Learning Resources	1."Robot Vision" by Berthold Klaus Paul Horn . 2. 'Computer Vision: Models, Learning, and Inference" by Simon J.D. Prince

Learning A	earning Assessment														
				Continuou	s Learning Asse	essment (50% w	eightage)			Final Exa	mination				
Level	Bloom's Level of	CLA –	1 (10%)	CLA – 2	2 (10%)	CLA –	3 (20%)	CLA – 4	(10%)#	(50% weightage)					
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice				
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%				
Level 1	Understand	20%	2070	1370	1570	15%	13%	13%	13%	15%	13%				
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
Level 2	Analyze	20%	2070	2076	2070	2076	20%	20%	20%	20%	2070				
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%				
Level 5	Create	10%	1070	1.5 70	1.570	1.570	1370	1.370	1.3 %	1370	1370				
	Total	100) %	100) %	100) %	100	%	100 %					

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Science University of Medres Guindy Cempus Chennel 600.025	Dr.S.Meenakshi, Assistant Professor,SRM IST, Ramapuram, Chennai

Course	PCI20DIXI Ruilding Conversational Altor Human Resources				Cou	rse	D			Dis	rinli	ne F	lecti	ve (¹ 011r	Se .			L	Т	Р	С	
Code	1 (120)105	Name	Duik	ing Conversatio	and ATIOT Human Resources	Cate	gory				DIS	cipin		accu	ve e	Jour	sc			3	0	2	4
Pre-req Cour				Co-requisite Courses	Nil	P	rogro Cou	essive rses	Nil														
Course Of	Course Offering Department Computer Applications Data Book / Codes/Standards																						
Course Lea (CLR):	Course Learning Rationale (CLR): The purpose of learning this course is to,											Pi	rogra	am L	earn	ing (Outc	omes	(PLO	D)			
CLR-1: Discover Conversational Artificial Intelligence technologies.							2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Study the basics of				R problems	Î		3	6													-	
	Discover appropria					(Bloom)	%	(%)	dg	pts		e	a			Data		S	s			•.	
CLR-4 :	Perform conversation	0,			f HR context	B	ICY	ent	wle	leol		edg	tio					kill	Skills			ioi	50
CLR-5 :	Formalize conversa	tional AI lin	ear and nonlin	near dialogue		Thinking	roficien	Attainment	al Kno	of Concepts	with Related	Knowledge	Specialization	Utilize	Modeling	Interpret	e Skills	lving S	tion Sl	Skills		l Behav	earnin
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:					Level of	Expecte		Fundamental Knowledge	Application	Link with R Discinlines	Procedural	Skills in Spe	Ability to U	Skills in Mo	Analyze, Int	Investigative	Problem Solving Skills	Communication	Analytical S	ICT Skills	Professional Behavior	Life Long Learning	
CLO-1 : Demonstrate fundamental understanding of the Conversational Artificial Intelligence and its foundations							85	80	L	-	Μ	L	Μ	-	-	Μ	Μ	Μ	Н	-	Н	Μ	-
CLO-2 : Apply basic principles conversational artificial intelligence in HR domain knowledge						3	85	80	L	Μ	Μ	L	Μ	-	-	Μ	Μ	Μ	Н	-	Н	Μ	-
CLO-3: Develop conversational AI models with understanding of HR policies and procedures.						3	85	80	L	-	Μ	L	Μ	-	-	Μ	Μ	Μ	Н	-	Н	Μ	-
CLO-4: Ability to understand Natural Language Processing fundamentals					3	85	80	L	Μ	Μ	L	Μ	-	-	Μ	Μ	Μ	Η	-	Η	Μ	-	
CLO-5 :	CLO-5 : Ability to learn conversational agents and develop dialogue systems.					3	85	80	L	-	Μ	L	Μ	-	-	Μ	Μ	Μ	Η	-	Η	Μ	-

Duration	(hour)	15	15	15	15	15
	SLO-1	Introduction to Conversational AI for HR	HR Domain Knowledge	Building Conversational AI Models	e	Project Development and Presentation
S-1	SLO-2			Overview of machine learning models for NLP tasks	Privacy concerns	Provide students with an opportunity to work on a project integrating concepts learned throughout the course
6.2	SLO-1	Applications and benefits of conversational AI in HR		Pre-trained language models for conversational AI	Data protection regulations	Project Proposal
S-2	SLO-2	Challenges and limitations of conversational AI in HR contexts	Recruitment, on-boarding, performance management, off- boarding	Fine-tuning models on HR-specific datasets		Develop a project proposal outlining the problem statement
S-3	SLO-1		HR compliance and legal considerations	Model evaluation	Transparency and accountability in AI decision-making	Objectives, methodology

	SLO-2	Use cases of HR context	Employee benefits, compensation, and payroll administration	Performance metrics	Ethical use of Conversational AI in HR interactions	Expected outcomes
S4to S5	SLO-1	Lab 1 : Implement a tokenization function to split input text into tokens.	Lab 4 :Construct dialogue trees representing various conversation paths based on user inputs and system responses.	Lab 7: Access HR-related data sources (e.g., employee database, leave management system) using APIs or database queries.	Lab 10: Implement strategies to mitigate biases and ensure fairness and inclusivity in conversational AI systems.	Lab 13 : Project integrating concepts learned throughout the course
	SLO-1	Natural Language Processing (NLP) Fundamentals	User-centered design principles for conversational interfaces	Linear and Non-linear dialogue	Fulfilment using webhook	Project Implementation
S-6	SLO-2	Basics of text processing and tokenization	Personal development and conversational tone	Actions & Parameters	Basic setup of webhook code	Implement the proposed conversational AI system, ,
S-7	SLO-1	Part-of-speech tagging	Prompt design	Understanding slot filling context	Extracting parameter values and structuring responses	Incorporating NLP
5-7	SLO-2	Syntactic parsing	Error handling	Extended Lead Generation	Fulfillment using cloud function	Dialogue management
	SLO-1	Named entity recognition and entity linking	Multimodal interactions	Linear dialogue	SAP Conversational AI	Integration with HR systems.
S-8	SLO-2	Sentiment analysis and emotion detection	Accessibility considerations	Nonlinear Dialogue	Connect Chatbot to HR systems	Ethical considerations
S9to10	SLO-1	Lab 2: Use an NLP library to perform part-of-speech tagging on sample sentences	Lab 5: Implement error handling strategies to handle user misunderstandings or unexpected inputs	Lab 8 :Preprocess retrieved data to extract relevant information and prepare it for use in conversational interactions	Chatbot and connect with HR	Lab 14: Demonstrating the functionality and effectiveness of the conversational AI system.
S-11	SLO-1	Dialogue Systems and Conversational Agents	Building blocks of Interaction models	Accessing HR databases	Assess the performance of conversational AI systems using appropriate metrics.	Deployment: Introduction to Heroku
	SLO-2	Introduction to dialogue systems architecture	Agents, types of Intents	APIs, and third-party services	User Testing	Deploying to Heroku
	SLO-1	Intent recognition and dialogue state tracking	creating Intents, training phrases	Integrating conversational AI with HR management software	Conduct user testing sessions with human participants	Deploying on Alexa,
S-12	SLO-2	Dialogue management strategies (rule-based, statistical, reinforcement learning)	Entities, configuring rich responses	Applicant tracking systems	Evaluate the usability and effectiveness of the conversational AI system	Re-training ,Validation& Testing
S-13	SLO-1	Handling multi-turn conversations.	Small talk and salutations	Data privacy	Analyze common errors and misunderstandings encountered during user interactions	Building a AI application on Heruku

	SLO-2	Context preservation.	Configuring and testing Intents on Google Assistant	Security, and compliance considerations.	Identify areas for improvement.	Demonstrating with HR systems
S14 to S15	SLO-1	Lab 3: Designing Conversational Flows: Define common HR scenarios (e.g., employee onboarding, leave request) and outline the conversation flow for each scenario.	intent recognition model using a	Lab 9: Test the integration between the conversational AI system and HR systems to ensure data accuracy and consistency.	l l	Lab 15: Deploying a chatbot on Heruku.
Learning		1. Hands-on chatbot with Google	Dialogflow, Loonycorn, O'Reilly, P	ackt publishing		

 Learning
 1.
 Hands-on chatbot with Google Dialognow, Loonycorn, O'Reiny, Packt publishing

 Resources
 2.
 Hands-on chatbots and conversational UI development, Srini Janarthanam, Packt publishing

Learning A	ssessment	-									
				Continu	ous Learning Ass	essment (50% w	eightage)			Final Exa	amination
Level	Bloom's Level of Thinking	CLA –	1 (10%)	CLA –	2 (10%)	CLA –	3 (20%)	CLA –	4 (10%)	(50% w	eightage)
	Level of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
T 11	Remember	2004	2004	1.50/	1.50/	1.50/	150/	150/	150/	1.50/	1.50/
Level 1	Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate	10%	10%	150/	150/	150/	15%	150/	150/	15%	15%
Level 5	Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	100) %	10	0 %	10	0 %	10	0 %	10	0 %

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	 Dr. Agusthiyar R, Professor, Computer Applications, SRM IST Ramapuram. Mrs.S.Suriya, Asst. Professor, Computer Applications, SRM IST Ramapuram.

Course	Code	PGI20F	01L	Course N	lame	Inter	rnsł	hip	Cou Cate	urse egory		Р		Indu			t Wo ighe						ons		L -	Т -	P -	C 2
Pre-requi			Nil			Co-requisite Courses		Nil				Prog	gress	ive C	our	ses	Ni	l										
Course O	ffering I	Departmen	t	Computer A	Applic	ations		Data Book / Codes/Stan	dards										N	lil								
Course L (CLR):	earning	Rationale	T	The purpose	of lear	rning this course is to,				Le	arniı	ng					Pro	ogra	m Le	earni	ing C	Jutco	omes	(PL	0)			
CLR-1 :	Demo	nstrate skill	s learnt	t in the real ti	me en	vironment.				1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Explo	re the differ	ent ind	ustries that a	re usin	g IT					(%)	%)		ge	s						-							
CLR-3 :				system aspec								r (led	Concepts		lge	on			Data		lls	lls			Ŀ	ı İ
CLR-4 :	Under	standing th	e profes	ssional conne	ctions	with the knowledge learnt				-	nc	ner		MO	n	T	lec	ati		50	μ	s	Ski	Skills			ivie	ng
CLR-5 :	Apply	ing the skil	ls in pro	oblem solving	g					king	licie	inn		Kn	ŭ	ate	Knowledge	aliz	ize	ling	bre	Skills	ng		Skills		Seh	Learning
Course L	earning	Outcomes	(CLO)	: At th	e end	of this course, learners will b	be a	ble to:		Level of Thinking	Expected Proficiency	Expected Attainment (%)		Fundamental Knowledge	Application of	Link with Related	Procedural K	Skills in Specialization	Ability to Utilize	Skills in Modeling	Analyze, Interpret	Investigative	Problem Solving Skills	Communication	Analytical Sk	ICT Skills	Professional Behavior	Life Long Le
CLO-1 :	To get	an insight	of an in	ndustry and o	rganiza	ation/company				3	80	70		L	Н	-	Н	L	-	-	-	L	L	-	Н	-	Н	Н
CLO-2 :	To gai	n valuable	skills a	nd knowledg	e					3	85	75		М	Н	L	М	L	-	-	-	Μ	L	-	Н	-	Н	Н
CLO-3 :	To ma	ke professi	onal co	nnections and	d enha	nce networking				3	75	70		М	Н	М	Н	L	-	-	-	М	L	-	Н	-	Н	Н
CLO-4 :	To get	experience	e in a fie	eld to allow t	he stuc	lent to make a career transition	n			3	85	80		М	Н	М	Н	L	-	-	-	Μ	L	-	Н	-	Н	Н
CLO-5 :	To get	an inside v	view of	an industry a	nd org	anization/company				3	85	75		Н	Н	М	Н	L	-	-	-	Μ	L	-	Н	-	Н	Н

Students can choose a company of their own interest for internship for a period of minimum four weeks to learn about the application of IT in real time environment. In the first week of July, all the students have to give a presentation about their observations made by them in internship. At the end of the internship period, every student shall submit a structured internship report within 15 days from the date of the completion of the internship period.

Learning Assessment				
	Continuous Learn (50% weig	8		valuation eightage)
Project Work / Internship	Review – 1	Review – 2	Internship Report	Viva-Voce
	20%	30 %	30 %	20 %

Course C	ode PGI20P	02L	Course Name	Mini Project Work	Cou Cate			Р		Indu			t Wo ighe						ons	-	L 0	T 0	P 12	C 6
Pre-requisit		Nil		Co-requisite Courses Nil				Pro	gres	sive (Cour	ses	Ni	I		7•1								
	ering Department		Computer Applica	ations Data Book / Code	es/Standards										N	Vil								
Course Lea (CLR):	rning Rationale	1	The purpose of lear	ning this course is to,		Le	arniı	ng					Pr	ograi	m Le	earni	ng O	utco	mes	(PLO	D)			
			t in the real time env			1	2	3]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 : CLR-4 :	Enhance the skills	in the profe	ssional connections	g IT with the knowledge learnt		ig (Bloom)	iency (%)	ment (%)		nowledge	oncepts	with Related Disciplines	wledge	zation	: Knowledge	ıg	et Data	Skills	g Skills	Skills			lavior	ing
Course Lea	rning Outcomes	CLO)	: At the end o	of this course, learners will be able to:		Level of Thinking	Expected Proficiency (%)	Expected Attainment (%)		Fundamental Knowledge	Application of Concepts	Link with Relat	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	Investigative Sk	Problem Solving Skills	Communication	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
CLO-1 :	To get an inside v	ew of	an industry and orga	anization/company		3	80	70		L	Н	-	Н	L	-	-	-	L	L	-	Н	-	-	-
CLO-2 :	To gain valuable s	kills a	nd knowledge			3	85	75		М	Н	L	М	L	-	-	-	М	L	-	Н	-	-	-
CLO-3 :	To make professio	nal co	onnections and enhar	ace networking		3	75	70		М	Н	М	Н	L	-	-	-	М	L	-	н	-	-	-
CLO-4 :	To get experience	in a fi	eld to allow the stud	ent to make a career transition		3	85	80		М	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-
CLO-5 :	To get an inside v	ew of	an industry and org	anization/company		3	85	75		Н	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-

Students can choose a company of their own interest for internship for a period of minimum four weeks to learn about the application of IT in real time environment. In the first week of July, all the students have to give a presentation about their observations made by them in internship. At the end of the internship period, every student shall submit a structured internship report within 15 days from the date of the completion of the internship period.

Learning Assessment				
	Continuous Learning Asser	ssment (50% weightage)	Final Evaluation	(50% weightage)
Project Work	Review – 1	Review – 2	Project Report	Viva-Voce
	20%	30 %	30 %	20 %

Course Code	PGI20G01J	Course Name	Block	chain Technology	Course Category	7	G			Ger	neric	Elect	ive (Cours	e			L 7. 3 (Г 0	P 2	C 4
Pre-requis Courses Course Off		nt Computer	Co-requisite Courses r Science and Applicati	1911	Progr Cou tandards Nil		Nil													I	
Course Lea	arning Rationale	The purp	ose of learning this cou	rse is to,	Lear	ning					Pro	gram	Lea	rning	Out	come	s (PL	.0)			
CLR-1 : D	emystify fundame	ntal componen	ts of Cryptography		1 2	2 3		1	2	3	4	5 (5 '	7 8	9	10	11	12	13	14	15
CLR-2 : Ex	plain the basics o	f the blockchai	n.							les			e.								
			alization in block chain		(Bloom)	(%))	e		plir		-	D a								
CLR-4: Id	entify and acquire	knowledge in	Bit coins		Blo	nt		edg	pts	sci	ge	g .	Ĩ.	Data		lls	s			-	
CLR-5 : A	bility to identify b	it coin wallets			0 0	mej		lwo	nce	ĪDi	led	atic	Ž		s	Skil	Skills			ivio	ğ
					Lof Thinking	Expected Attainment		Fundamental Knowledge	Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	iy to Unize Knowledge	Analyze. Interpret	Investigative Skills	Problem Solving Skills	Communication S	Analytical Skills	Skills	Professional Behavior	Life Long Learning
Course Lea (CLO):	arning Outcomes	At the end	d of this course, learner	rs will be able to:	Level	Expected	•	Fund	Appli	Link	Proce	Skills	ADDULY	Analy	Inves	Probl	Com	Analy	ICT S	Profe	Life I
CLO-1 : A	equire the basies of	of Cryptography	y and how it works behin	nd – the scene	2 8	5 80		L	-	-	-				Μ	-	-	-	-	-	-
CLO-2 : Be	e aware block cha	ins and their tec	chnology		3 8	5 80		Μ	Η	Η	-				Μ	-	-	-	-	-	-
CLO-3 : U	nderstand the dece	entralization pro	ocess.		3 8	5 80		-	Η	Η	Η	Н		· M	M	-	-	-	-	-	-
	tablish deep unde					5 80		-	-	Η	Η	Μ		- M		-	-	-	-	-	-
CLO-5 : A	pply knowledge ir	creation of bit	t coin wallet		3 8	5 80		-	-	Η	Η	Н	- -	- -	Μ	Η	-	-	-	-	-

	ration our)	15	15	15	15	15
	SLO-1	Introduction to Cryptography:	Blockchain basics	Permissioned ledger	Introducing Bitcoin	Bitcoin Network and Payments
S-1	SLO-2	Cryptographic Hash Functions	The growth of blockchain technology	Shared ledger	Bitcoin	The Bitcoin network
S-2	SLO-1	Properties of Hash functions	Distributed systems	Fully private and proprietary blockchains	Bitcoin definition	Wallets
5-2	SLO-2	SHA-256.	Electronic cash	Tokenized blockchains	Bitcoin – a bird's-eye view	Non-deterministic wallets- Deterministic wallets
S-3	SLO-1	Hash Pointers and Data Structures	Blockchain defined	Tokenless blockchains	Sending a payment to someone	Hierarchical Deterministic wallets

	SLO-2	Merkle trees	Generic elements of a blockchain	Consensus	Digital keys and addresses	Brain wallets-Hardware wallets
S-4-5	SLO-2	Lab :1 Demonstrating secret key cryptography techniques	Lab :4 Implement a digital signature algorithm in c	Lab 7: Study assignment on blockchain-based	Lab 10: Creating bit coins	Lab 13: Creating a Crypto- currency Wallet using Java
		Proof of membership		applications/projects.		
S-6		Proof of non-membership	Generic elements of a blockchain	Consensus in blockchain	Private keys in Bitcoin	Online wallets
		Digital Signatures	How blockchain works	CAP theorem and blockchain	Public keys in Bitcoin	Mobile wallets
	SLO-1	Properties	How blockchain accumulates blocks	Decentralization	Addresses in Bitcoin	Bitcoin payments
S-7	SLO-2	Practical Concerns	Benefits and limitations of blockchain	Decentralization using blockchain	Base58Check encoding	Innovation in Bitcoin
	SLO-1	ECDSA	Tions of blockshoin to shu slowy	Methods of decentralization	Vanity addresses-Multisignature	Bitcoin Improvement Proposals
S-8	SL0-1	ECDSA	Tiers of blockchain technology		addresses	(BIPs)
	SLO-2	Public Keys as Identities	Features of a blockchain	Disintermediation		Advanced protocols
S-9-	SLO-1	Lab 2: Demonstrating public key	Lab 6: Demonstrate the working	Lab 8: Write a program to study	Lab 11: Case study for bitcoin	Lab 14: Code to implement peer-
10	SLO-2	cryptography techniques	of the Merkle tree using any programming language	block chain using python	generation mechanisms.	to-peer using block chain
S11	SLO-1	Cryptocurrency	Types of blockchain	Contest-driven decentralization	Transactions-The transaction life cycle	Segregated Witness (SegWit)
511	SLO-2	A Simple Cryptocurrency	Distributed ledgers-Distributed Ledger Technology	Routes to decentralization	Transaction fee	Bitcoin Cash
	SLO-1	Coin	Public blockchains	How to decentralize	The transaction data structure	Bitcoin Gold- Bitcoin investment and buying and sellingbitcoins
S-12	SLO-2	GoofyCoin	Private blockchains	The decentralization framework example	Metadata	Bitcoin Clients and APIs-Bitcoin installation-Types of Bitcoin Core clients
	SLO-1	ScroogeCoin	Semiprivate blockchains	Blockchain and full ecosystemdecentralization	Inputs-Outputs	Setting up a Bitcoin node-Setting up the source code
8-13	SLO-2	ScroogeCoin	Sidechains	Storage	Types of transactions- Coinbase transactions	Experimenting with Bitcoin-cli- Bitcoin programming and the command- line interface

S-14- 15	-	8 8	Techniques (SHA and MD5).	Lab 9: Case Study on Block chain decentralization	Application Using any	Lab 15: Case Study on Applications of Bit coins
		. Bitcoin and Cryptocurrency Technolog Edward Felten, Andrew Miller and Steve	gies: A Comprehensive Introduction by A n Goldfeder, Princeton Press, 2016			

Learning Resources	 Edward Felten, Andrew Miller and Steven Goldfeder, Princeton Press, 2016. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization and Smart Contracts Explained", Second Edition, Packt Publishing, 2018. 	1. Arshdeep Bahga, Vijay Madisetti, "Blockchain Applications: A Hands On Approach", 2017	
-----------------------	---	--	--

g	Assessment Bloom's			Contin	uous Learning	Assessment (50)% weightage)			Final Exa	amination	
Level	Level of	CLA -	- 1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA – 4	l (10%)#	(50% w	eightage)	
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
T	Remember	200/	200/	150/	150/	150/	150/	150/	150/	150/	150/	
Level 1	Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 5	Create	10%	10%	15%	15%	15%	13%	15%	13%	15%	15%	
	Total	1	00 %	100 %		100 %		100) %	100 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2	Dr.S. Gopinathan, Professor and Head, Department of Computer Science,	
Venture Drive, #13-26 Vision Exchange, Singapore, 608526	University of Madras, Guindy Campus, Chennai – 600 025	Dr.N.Krishnamoorthy . SRMIST, RMP

LT Р С Course Course Course PGI20G02J **Cyber Security** G **Generic Elective Courses** 3 2 Code Name Category 0 4 Pre-requisite Nil Co-requisite Nil Progressive Nil Courses Courses Courses **Course Offering Department Computer Science and Applications** Data Book / Codes/Standards Nil **Course Learning Rationale** The purpose of learning this course is to, **Program Learning Outcomes (PLO)** Learning (CLR): CLR-1 : To learn cybercrime and cyber law 9 10 11 12 13 14 15 2 3 1 2 3 4 5 6 7 8 CLR-2 : To understand the cyber-attacks and tools for mitigating them Link with Related Disciplines Ability to Utilize Knowledge Level of Thinking (Bloom) S Expected Proficiency (%) Expected Attainment (%) CLR-3: To understand information gathering Fundamental Knowledge Application of Concepts Analyze, Interpret Data CLR-4 : To learn how to detect a cyber-attack **Procedural Knowledge Problem Solving Skills Skills in Specialization** Communication Skills **Professional Behavior** CLR-5 : To learn how to prevent a cyber-attack Life Long Learning **Investigative Skills** Skills in Modeling **Analytical Skills** ICT Skills **Course Learning Outcomes** At the end of this course, learners will be able to: (CLO): 2 CLO-1 : Explain the basics of cyber security, cyber crime and cyber law 80 M M L L L L L Μ --85 M M CLO-2 : Classify various types of attacks and learn the tools to launch the attacks 3 80 Н L Н Μ Μ L L -3 85 80 CLO-3 : Apply various tools to perform information gathering Μ L M L -L -M M M CLO-4 : Apply intrusion techniques to detect intrusion 3 85 80 M M M M M Н Н L L -CLO-5 : Apply intrusion prevention techniques to prevent intrusion M M Н M L L L L L L -Μ 3 85 80 D. ..

	ration 10ur)	15	15	15	15	15
~ -	SLO-2		OSWAP	Reconnaissance: Harvester Whois- Netcraft – Host	Intrusion Detection:	Intrusion Prevention
S-2	SLO-1	History of Internet	Malicious Attack Threats and	Extracting Information from DNS	Host -Based Intrusion Detection	Firewalls and Intrusion Prevention
	SLO-2	Impact of Internet		Extracting Information from E-mail Servers		Systems
S-3	SLO-1	CIA Triad	Scope of Cyber-Attacks	Social Engineering Reconnaissance	Network -Based Intrusion Detection	Need for Firewalls
	SLO-2	Reason for Cyber Crime	1 V V V	Scanning – Port Scanning		-
	SLO-1					

S-4- 5		Lab :1 Install Kali Linux on Virtual box	Lab 4: Understand the nmap command d and scan a target using nmap	Lab 7: Write a program to calculate the message digest of a text using the SHA-1 algorithm.	Lab 10: Explore and install Snort intrusion detection tool.	Lab 13: Use Fail2banto scan log files and ban Ips that show the malicious signs
S-6	SLO-1 SLO-2	Need for Cyber Security	Security Breach	Network Scanning Vulnerability Scanning	Distributed or Hybrid Intrusion Detection	Firewall Characteristics
S-7	SLO-1 SLO-2	History of Cyber Crime	Types of Malicious Attacks	Scanning Methodology Ping Sweer Techniques	Intrusion Detection Exchange Format	Firewall &Access Policy
S-8	SLO-1 SLO-2	Cybercriminals	Malicious Software	Nmap Command Switches	Honeypots	Types of Firewalls
S-9- 10		Lab 2: Explore Kali Linux and bash scripting	Lab 5: Install metasploitable2 on the virtual box and search for unpatched vulnerabilities	Lab 8: Write a program to calculate the message digest of a text using the MD-5 algorithm	Lab 11: Install Linus server on the virtual box and install ssh	Lab 14: Launch brute-force attacks on the Linux server using Hydra.
S 11	SLO-1 SLO-2	Classification of Cybercrimes	Common Attack Vectors	SYN – Stealth	Example System Snort	Firewall Basing
S-12		A Global Perspective on Cyber Crimes	Social engineering Attack Wireless Network Attack	XMAS – NULL – IDLE – FIN Scans	Enabling new human experiences,	Firewall Location and Configurations Intrusion Prevention Systems
S-13	SLO-1 SLO-2	The Indian IT Act Cybercrime and Punishment	Web Application Attack Attack Tools Countermeasures	Banner Grabbing and OS Finger printing Techniques.	Trust in online environment	Example Unified Threat Management Products.
S- 14- 15	SLO-2	Lab 3: Perform open source intelligence gathering using Netcraft, Whois Lookups, DNS Reconnaissance, Harvester and Maltego	Lab 6: Use Metasploit to exploit an unpatched vulnerability	Lab 9: Write a program to implement digital signature standard	Lab 12: Study Email Tracking and EmailTracing and write a report on them	Lab 15: Perform real-time network traffic analysis and data pocket logging using Snort

Learning Resources	 Anand Shinde, "Introduction to Cyber Security Guide to the World of Cyber Security", Notion Press, 2021 (Unit 1) Nina Godbole, Sunit Belapure, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley Publishers, 2011 (Unit 1) https://owasp.org/www-project-top-ten/ 	 David Kim, Michael G. Solomon, "Fundamentals of Information Systems Security", Jones & Bartlett Learning Publishers, 2013 (Unit 2) Patrick Engebretson, "The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made easy", Elsevier, 2011 (Unit 3) Kimberly Graves, "CEH Official Certified Ethical hacker Review Guide", Wiley Publishers, 2007 (Unit 3) William Stallings, Lawrie Brown, "Computer Security Principles and Practice", Third Edition, Pearson Education, 2015 (Units 4 and 5) Georgia Weidman, "Penetration Testing: A Hands-On Introduction to
		Press, 2014 (Lab)

Learning A	Assessment												
	Bloom's		Continuous Learning Assessment (50% weightage)									amination	
Level	Level of	CLA	- 1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA – 4	(10%)#		(50% weightage)		
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%		15%	15%	
Level I	Understand	20%	20%	13%	13%	13%	13%	15%	13%		13%	13%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%		20%	20%	
Level 2	Analyze	2076	2070	20%	20%	20%	2070	2070	2070		2070	20%	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%		15%	15%	
Level 5	Create	1070	1070	1.5 %	1.5 %	1370	1.5 %	1.5 %	1370		1370	1370	
	Total	1	00 %	100) %	1	00 %	100	%		100) %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
		Dr.J.Dhilipan, Professor & Head, SRMIST, RMP
Venture Drive, #13-26 Vision Exchange, Singapore, 608526	University of Madras, Guindy Campus, Chennai – 600 025	D.B.Shanmugam, Assistant Professor , SRMIST, RMP

Course PGI20G03J	Course	Mobile Communication Network	(Cour	se	G			Ge	nerio	r Ele	etiv	e Co	urse			I	L J		Р	С
Code	Name		С	ateg	ory	Ŭ			00					uise	·			3 ()	2	4
Pre-requisite CoursesNilCourse Offering Department	t Computer Scien	Co-requisite Courses Nil ce and Applications Data Book / Codes/Standa		Prog Co	gress	sive es	Jil														
Course Learning Rationale (CLR):	The purpose of l	earning this course is to,		Le	earni	ng				Pr	ogra	m Lo	earni	ing (Dute	omes	(PL	0)			
CLR-1 : Critical Understandi	ng of Communication	Infrastructure		1	2	3		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Preparation for Indus								e.						_							
CLR-3 : Empowering Innova		ving			c	nt		Knowledg Concepts	-	ge	n			Data		lls	ls			F	
CLR-4 : Global Connectivity	-			<u>5</u> 0	ien	me			ч	vled	ati		50	st D	s	Skills	Skills			avic	ng
CLR-5 : Foundation for Adva	nced Studies and Spe	cializations		kir	fic	ain		ŭ k		NOU	aliz	ize	ling	pre	Skills	ng	n.	lls		ehi	ī
				l of Thinking	cted Proficiency	cted Attainment		Fundamental Knowledge Application of Concepts	with Related	Procedural Knowledge	in Specialization	y to Utilize	in Modeling	Analyze, Interpret	Investigative S	em Solving	Communication	Analytical Skills	Skills	Professional Behavior	ong Learning
Course Learning Outcomes (CLO):	At the end of this	s course, learners will be able to:		Level	Expected	Expected		Fund Appli	Link	Proce	Skills	Ability	Skills	Analy	Inves	Problem	Com	Analy	ICT S	Profe	Life Long
CLO-1 : Explain the basics of				2	85	80		L -	-	-	-	-	-	-	Μ	-	-	-	-	-	-
CLO-2 : Illustrate the generat	ions of telecommunic	ation systems in wireless network		3	85	80	I	M H	Η	-	-	-	-	-	Μ	-	-	-	-	-	-
CLO-3 : Understand the archi				3	85	80		- H	Η	Η	Н	-	-	Μ	Μ	-	-	-	-	-	-
CLO-4 : Determine the functi	onality of network lay	yer and Identify a routing protocol for a given Ad-hoc net	tworks	3	85	80			Η	Η	Μ	-	-	Μ	Μ	-	-	-	-	-	-
CLO-5 : Explain the function	ality of Transport and	Application layer		3	85	80			Η	Η	Н	-	-	-	Μ	Н	-	-	-	-	-

	ration 10ur)	15 15 15		15	15	
S-1	SLO-1		Wireless Propagation and Channel Modelling:	Multiple Access Techniques:	Fundamental principles of cellular network design	Mobile Network Protocols: The protocols and protocols stacks
	SLO-1	Evolution of Mobile Communication	Propagation Mechanisms	Frequency Division Multiple Access (FDMA)	Cellular Architecture	Communication between mobile devices and network infrastructure
S-2	SLO-2	Introduce foundational concepts	Various propagation mechanisms	spectrum into frequency hands	Hierarchical structure of cellular networks	OSI Model and Protocol Stack
S-3	SLO-1	Spectrum allocation, modulation techniques, and network architecture	Reflection, diffraction and scattering	1	Base stations, mobile stations, and switching centers	The physical, data link, network, transport, and application layers

	SLO-2	Wireless Propagation and Channel Characteristics	Impact on signal propagation.	TDMA's time-sharing approach - users transmit in allocated time slots	Cell Planning: The process of cell planning	Physical Layer Protocols: GSM, CDMA, and LTE		
S-4- 5	SLO-1 SLO-2	Lab :1 Implement a simple mobile communication system simulator that demonstrates the basic concepts of frequency reuse, handover, and mobility management	Lab 4: Develop a simulator to compare and evaluate the performance of FDMA, TDMA, CDMA, and OFDMA in terms of spectral efficiency and interference management	adaptive beam forming, or interference cancellation in a	communication system simulator and analyze its performance in	Lab 13: Design and implement QoS mechanisms to prioritize traffic, ensure bandwidth allocation, and manage latency in a simulated mobile network environment		
S-6	SLO-1		Path Loss Models	Code Division Multiple Access (CDMA)	Cell sizing, frequency reuse, and cell sectorization	Modulation schemes, frame structures, and channel coding techniques		
S-7	SLO-1	Overview of Internet	Free space path loss, two-ray ground reflection model, and log-normal shadowing model	CDMA's spread spectrum technique- transmit using unique codes	Capacity and Coverage Planning	Data Link Layer Protocols: LAPD (Link Access Procedure for D channels)		
	SLO-1	Building Network and its types	Fading and Multipath Propagation: Understand fading phenomena	Simultaneous transmission	Techniques for optimizing network capacity and coverage	PPP (Point-to-Point Protocol) used for data encapsulation and framing		
S-8	SLO-2	Overview of Data and Signals	Rayleigh fading and Rician fading, and techniques to mitigate their effects	Orthogonal Frequency Division Multiple Access (OFDMA)	Cell splitting and sectorization	Network Layer Protocols: IP (Internet Protocol) and Mobile IP		
S-9- 10	SLO-1 SLO-2	Lab 2: Analyze the performance differences between 1G, 2G, 3G, 4G, and 5G networks using network simulation tools like NS-3 or MATLAB. Wireless Propagation and Channel Modelling	Lab 5: Design and simulate a cellular network layout considering cell planning, frequency reuse, and interference management strategies using software like OpenCellular or Atoll	the OSI protocol stack, including physical, data link, network, and transport layers, and demonstrate	mobility of devices across different IP networks, and evaluate its effectiveness in real-world	(LBS) applications using GPS or		
s	SLO-1	Explore how radio waves propagate in different environments	Channel Modelling: mathematical models for channel characterization	Introduce OFDMA - Divides the spectrum into subcarriers	Interference Management	Routing and mobility management in mobile networks		
11	SLO-2	Free space, urban, and indoor scenarios	Stochastic models and empirical models		Strategies for mitigating interference in cellular networks	Mobile Transport And Application Layer		
	SLO-1	Mobility Management: Techniques for managing mobility in mobile networks	Mobile telecommunication system GSM, Architecture, Protocols, Connection Establishment	Wireless LANs and PANs	Power control, adaptive modulation, and interference cancellation	Mobile TCP: WAP ,Architecture		
S-12	SLO-1 SLO-2	for managing mobility in mobile	GSM, Architecture, Protocols,	IEEE 202 11 Standard	and interference cancellation MOBILE NETWORK LAYER:	Mobile TCP: WAP ,Architecture WDP , WTLS , WTP		

Edition, Tata Mc Graw Hill Edition ,2006.

FACULTY OF SCIENCE AND HUMANITIES SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

	SLO-2	FDMA ,	CDMA	UMTS, Architecture	Blue Tooth- Wi-Fi ,WiMAX	MANET Vs VANET	WTA Architecture, WML
S-14	SLO-2	Lab 3: Simulate propaga MATLA	the effects of multipath tion and fading using B or Python, and analyze tot on signal quality and	Develop an algorithm to optimize the allocation of resources (frequency channels, time slots) in a cellular network to maximize canacity and coverage while	simulator to handle functions such as call setup, SMS messaging, and handover between base stations.		Lab 15: Experiment with emerging 5G technologies such as massive MIMO, beam forming, and network slicing by prototyping and testing various network configurations in a laboratory setting
Lear Reso	ning urces	1. 2. 3.	Prasant Kumar Pattnaik, R New Delhi – 2012	Communications", PHI, Second Edition ajib Mall, "Fundamentals of Mobile C Cellular Telecommunications-Analog	omputing", PHI Learning Pvt.Ltd,	Wireless and Mobile systems", Thom	lerk, Martin S. Nicklons and Thomas

3. C.K.Toh, "AdHoc Mobile Wireless Networksll, First Edition, Pearson Education, 2002.

	Bloom's Continuous Learning Assessment (50% weightage)											
Level	Level of	CLA	- 1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA –	4 (10%)#	(50% w	eightage)	
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level I	Understand	20%	20%	15%	15%	13%	15%	15%	13%	15%	15%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	20%	2070	2070	20%	2070	2070	2070	2070	20%	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 5	Create	10%	10%	15%	15%	13%	15%	15%	13%	15%	13%	
	Total	1	00 %	100) %	1	00 %	10	0 %	100	00 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.T.Papitha Christobel, SRMIST,RMP

Course	PGI20G04J	Course		Quantum Mac	hine Learning		Cou		G		GI	ENEF	RIC F	ELEG	сти	E CO)IIR	SE		L		I		С
Code	1 01200010	Name		Quantum Max	line Dear ling		Categ	ory	Ŭ		0.					LUC	/on			3	0	2	2	4
Cours	uisite Ses Nil Offering Departmen	nt Compu		Co-requisite Courses nd Applications	Data Book / Codes/S	tandards		gress		Nil														
Course L (CLR):	earning Rationale	The pu	irpose of leari	ning this course is to	,		L	earni	ing				Pro	ograi	m Le	earnin	g Oı	itcoi	mes	(PLC	0)			
U K-I '	Learn the aspects re computer science	lated to Mac	chine learning	is a subset of artificia	l intelligence in the field o	of	1	2	3		2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLK-2:	explicitly programm	ned			earn" with data, without be		(u	-				nes			ge									
	Conceive the concepthese classes.	pt of model	that assigns un	seen inputs to one or	more (multi-label classific	cation) of	Bloon	cy (%	nt (%)	-	spts	iscipli	ge	u	owled		Data		lls	ls			r	
	Identify and acquire Learning algorithms		in various Sup	pervised learning, Un	Supervised learning, Insta	nce based	() ()	icienc	Attainment		of Concepts	ted Di	owled	lizatic	ze Kno		oret D	kills	ıg Skills	n Skills	ls		ehavio	ming:
	Ability to identify the manipulate or apply			ods which identifies le	earns, or evolves "rules" to	store,	Level of Thinking (Bloom)	Expected Proficiency (%)			Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret	Investigative Skills	Problem Solving	Communication	Analytical Skills	Skills	Professional Behavior	Long Learning
(CLO):	earning Outcomes	At the		urse, learners will b					Expected			Link w	Proced	Skills iı	Ability	Skills in	Analyz	Investig	Probler	Comm	Analyti			Life Lo
				ine Learningalgorith	ns		2	85	80	I		-	Μ	-	-	-	-	-	-	-	L		Η	-
	Apply appropriate d			6 6			3	85	80	ł		Μ	-	-	-	-	-	-	-	-	L		М	-
	Use Machine Learn	~ ~					3	85	80	I		Η	Μ	-	-	-	-	-	-	-	L		М	-
				ng machine learning a	lgorithms.		3	85	80	I		Η	Μ	-	-	-	-	-	-	-			M	-
	Design Java/Python Algorithms.	programs fo	or various Mac	chine Learning			3	85	80	ł	I M	-	Н	-	-	-	-	-	-	-	L	H	М	-

	ration 10ur)	15	15	15	15	15
S-1	SLO-1	Introduction to Quantum Computing	Diagonal Representation of an Operator	Grover's Algorithm	Uliantium Linear Regression	Quantum Variational Optimization and Adiabatic Methods
5-1	SLO-2	Quantum Bit	Normal Operators	Quantum Fourier Transform and Related Algorithms	Quantum Swap Test Subroutine	Variational Quantum Eigensolver
	SLO-1	Multiple Qubits	Unitary Operators	Fourier Series	Swap Test Implementation	Expectation Computation
S-2	SLO-2	Bell State	Commutator and Anti-commutator Operators	Fourier Transform	Quantum Euclidean Distance Calculation	Isling Model and Its Hamiltonian
S-3 SLO-1 Dira		Dirac Notation	Postulates of Quantum Mechanics	Discrete Fourier Transform	Quantum Euclidean Distance	Isling Model for a Quantum System

	SLO-2	Single-Qubit Gates	Hamiltonian Simulation and Trotterization	Kronecker Delta Function	Compute Routine Implementation	Implementation of the VQE Algorithm
S-4- 5	SLO-2	Lab :1 The probability that it is Friday and that a student is absent is 3 %. Since there are5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Bayesrule in python to get the result.		Lab 7: Implement the finite words classification system using Back- propagation algorithm	Lab 10: Program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample	Lab 13: Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set
S-6	SLO-1	Multiple-Qubit Gates	Introduction to Quantum Algorithms		Quantum K-Means Clustering	Quantum Max-Cut Graph Clustering
	SLO-2	Measurements in Different Basis		Quantum Fourier Transform	Quantum K-Means Clustering Using Cosine Distance	Max-Cut Clustering Implementation Using VQE
S-7	SLO-1	Bell States with Quantum Gates	Cirq	QFT Implementation in Cirq	Quantum Principal Component Analysis	Quantum Adiabatic Theorem
5-7	SLO-2	Quantum Teleportation	Simulation in Cirq with a Hadamard Gate	Hadamard Transform as a Fourier Transform	Quantum Support Vector Machines	Proof of the Adiabatic Theorem
S-8	SLO-1	Quantum Parallelism Algorithms	Qiskit	Quantum Phase Estimation	Quantum Least Square SVM	Quantum Approximate Optimization Algorithm
5-0	SLO-2	Quantum Interference	Bell State Creation and Measurement	Quantum Phase Estimation Illustration in Cirq	SVM Implementation Using Qiskit	Implementation of QAOA
S-9- 10		Lab 2: Extract the data from database using python	Lab 5: Implement Naïve Bayes theorem to classify the English text	Lab 8: Find-S and Candidate Elimination Algorithm	Network by implementing the	Lab 14: program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
s	SI / 1	Introduction to Mathematical Foundations	Quantum Teleportation		Learning	Quantum Random Walk
11	SLO-2	Postulates of Quantum Computing	Quantum Random Number Generator	and Factoring	Hybrid Quantum-Classical Neural Networks	Quantum Random Walk Implementation
	SLO-1	Topics from Linear Algebra	Deutsch–Jozsa Algorithm Implementation	Hidden Subgroup Problem	Layer	Programming a quantum computer
S-12	SLO-2	Basis Vectors	Bernstein–Vajirani Algorithm	Introduction to Quantum Machine	ne Quantum-Classification Using Hybrid Neural Network	The IBMQ

SLO-2Linear OperatorsSimons AlgorithmHHL Algorithm Implementation Using CirqMNIST Classification Using TensorFlow QuantumCoding a quantum computer using simulator to carry basic quantum state analysisSLO-1SLO-1Lab 3: Implement k-nearest neighbours classification using pythonLab 6:Implement an algorithm to demonstrate the significance of genetic algorithmLab 6:Implement an algorithm to demonstrate the significance of genetic algorithm to output a description of the set of allhypotheses consistent with the training avamplesLab 12: Program to implement the naïve Bayesian classifier for a sample training dataset stored as a .CSV file. Compute the accuracy of the classifier, considering few test datasets.Lab 15: Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same dataset for user a set of allhypotheses consistent with the training avamplesLab 12: Program to implement the naïve Bayesian classifier for a sample training dataset stored as a .CSV file. Compute the accuracy of the classifier, considering few test datasets.Lab 15: Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same dataset for user of the classifier, considering few test datasets.Lab 15: Apply EM algorithm to cluster a set of data stored in a .CSV file. Compute the accuracy of the classifier, considering few test datasets.Lab 15: Apply EM algorithm to clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python MLlibrary	S-13		Orthonormal Basis	Bell's Inequality Test	HHL Algorithm	Quantum Neural Network for Classification on Near-Term Processors	Coding a quantum computer using simulator to carry basic quantum measurement
S- 14- 15 SLO-2 Lab 3: Implement k-nearest neighbours classification using python Lab 6:Implement an algorithm to data examples stored in a .CSV file, implement anddemonstrate the Candidate-Elimination algorithm to output a description of the set of allhypotheses consistent with the training data examples stored in a .CSV file, compute the accuracy of the set of allhypotheses consistent with the training algorithm to output a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description of the set of allhypotheses consistent with the training algorithm to autput a description on the quality of clustering. You can add Java/Python MLlibrary	5 10		Linear Operators	Simons Algorithm	e i	e	
	14-	SLO-2	neighbours classification using	Lab 6:Implement an algorithm to demonstrate the significance of genetic algorithm	data examples stored in a .CSV file, implement anddemonstrate the Candidate-Elimination algorithm to output a description of the set of allhypotheses consistent with the training	naïve Bayesian classifier for a sample training dataset stored as a .CSV file. Compute the accuracy of the classifier, considering few	cluster a set of data stored in a .CSV file. Use the same dataset for clustering using k-Means

	1. Quantum Machine Learning-Thinking and Exploration in Neural Network Models for Quantum Science and Quantum	
Learning	Computing, Claudio Conti, QST. 2. Machine Learning with Quantum Computers, Francesco Petruccione and Maria Schuld 3. An introduction to quantum machine learning, M. Schuld, I. Sinayskiy, F. Petruccione	1. Quantum Machine Learning with Python: Using Cirq from Google Research and IBM Qiskit, Santanu Pattanayak, 2021

Learning A	Assessment											
	Bloom's Continuous Learning Assessment (50% weightage)											
Level	Level of	CLA	- 1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA –	4 (10%)#	(50% w	eightage)	
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	- 20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level I	Understand	20%	20%	13%	13%	13%	13%	15%	13%	13%	13%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 2	Analyze	2070	2070	2078	2070	20%	2070	2070	20%	2070	20%	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 5	Create	10%	10%	13%	13%	13%	13%	13%	13%	13%	13%	
	Total	1	00 %	10	0 %	1	.00 %	10	00 %	10	0 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
DeepNonere AL / Venture Drive $\#13_76$ Vision Exchange	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr.E.Srimathi. SRMIST, RMP

Course paragazy	Course			Cou	ırse	0		0		DIG		OTI			DOD		Ι	L 1	[P	С
Code PGI20G05J	Name	Cognitive Analytics To	ools and Techniques	Cate	gory	G		G	ENE	RIC	ELE	CTI	VE C	COUL	RSE		3	3 ()	2	4
L							1													I	
Pre-requisite Courses Nil		Co-requisite Courses Nil			ogres Cours		Nil														
Course Offering Departmen	nt Comp	uter Science and Applications	Data Book / Codes/Standards	Nil																	
							_														
Course Learning Rationale (CLR):	The pu	urpose of learning this course is to,		Ι	Learn	ing				Pr	ogra	m Le	earni	ing C	Jutco	omes	(PL	0)			
CLR-1: Learn the aspects rel	lated to Cos	gnitive Psychology, Cognitive System	s and Cognitive Computing] [1	2	3		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
1		elling and build the knowledge represe	6 1 6			5	-		-	+ •	5	0	,	-	-	10		12	10		
		ive analytical tools and platforms.			Ś	Ħ		Knowledg Concents	-	ge	E			Data		lls	s			H	
1	0	in cognitive techniques, algorithms a	nd ethical considerations	b B	e je	me		MO	g l	vled	ati		50	et D	ls	Skills	Skills			avic	ng
		pplications of cognitive computing.		Thinking	rofic	Attainment		al Kn		Knov	Specialization	to Utilize	Modeling	terpro	e Skills	Solving		Skills		l Beh	earni
				of Th	ted P			ument ation	with Related	dural	in Spe	y to U		ze, In	igativ	em So	nunice	tical S	Skills	siona	ong L
Course Learning Outcomes (CLO):	At the	end of this course, learners will be	able to:	Level	Expected Proficiency	Expected		Fundamental Knowledge Annlication of Concents	Link	Procedural Knowledge	Skills in	Ability	Skills in	Analyze, Interpret	Investigative	Problem	Communication	Analytical	ICT S	Professional Behavior	Life Long Learning
CLO-1 : Acquire the basics o	f cognitive	systems and its architecture		2		80		L -	-	-	-	-	-	-	М	-	-	-	-	-	-
CLO-2 : Implement of variou	is cognitive	models and its knowledge representa	tion	3	85	80		M H	Η	-	-	-	-	-	Μ	-	-	-	-	-	-
CLO-3 : Design and implement	ent models i	using advanced cognitive tools and tee	chniques	3	85	80		- H	Η	Η	Η	-	-	М	Μ	-	-	-	-	-	-
		ng the usage of cognitive technologica		3	85	80			Η	Н	Μ	-	М	Μ	Μ	-	-	-	-	-	-
CLO-5 : Apply cognitive ana	lytics know	ledge in various emerging application	areas.	3	85	80			Η	Η	Η	-	-	-	М	Н	-	Μ	-	-	-

Durati	on (hour)	15	15	15	15	15
	SLO-1 Cognitive Psychology,			Overview of Cognitive analytics Tools with advanced computational		
S-1	SLO-2	The Architecture of the Mind, The Nature of Cognitive Psychology	8 1	1	Enabling cognitive technologies in cognitive computing	Applications: Cognitive analytics
S-2		Definition of Cognitive Science	Low Level Cognitive Component Analysis: Machine Learning High Level Cognitive Component Analysis	Natural Language Processing Tools	Cognitive Analytics with Machine Learning Algorithms	Human-Computer Interaction (HCI)
S-3	S-3 SLO-1 SLO-2	The Lises of Cognitive Systems	cognitive modelling: Symbolic Models	Machine Learning and Predictive Analytics Platforms	Artificial Intelligence as the foundation of cognitive Analytics	Education and Training

S-4-5	SLO-1 SLO-2		Lab4: Implementation of Decision tree and K- Mean algorithm-A Low Level cognitive approach	Lab 7:Implement model using speech analytics techniques	Lab 10Text Detection and Extraction using OpenCV and OCR	Lab13: Build a cognitive assistant for Visually Impaired
S-6	SLO-1 SLO-2	Understanding cognition Design Principles for Cognitive Systems	Connectionist Models	Cognitive Search and Knowledge Discovery Tools	Cognitive Computing with NLP	Psychology and Neuroscience
S-7	SLO-1 SLO-2	1 0	Bayesian Models: Hybrid Models	Open AI'S GPT Model	Cognitive Computing and Reinforcement Learning	Artificial Intelligence (AI): human- like reasoning, perception, and decision-making
S-8	SLO-1 SLO-2	Human Centred Cognitive Cycle	Machines and Cognition	Visual analytics and Data Visualization Tools	Cognitive Computing and Deep Learning	chatbots, and virtual assistants.
S-9-10	SLO-1 SLO-2	Lab 2: Implementation of Simple Machine AI real time problem	Lab5:Build a Bayesian Model for Anomaly=y Detection	Lab8:Implement Data Visualization using your own dataset	Lab 11: Age predictor and Gender classifier project using OpenCV	Lab 14: Build and train a self- learning Chatbot
S 11	SLO-1 SLO-2	Evolution of Cognitive computing	Knowledge Based systems	Cognitive computing Platforms- Cloud AI Platform	Ethical considerations in cognitive analytics	Healthcare: medical diagnosis, treatment planning, and patient monitoring
S-12	SLO-1 SLO-2	Cognitive Computing Architecture	Logical Representation and Reasoning Learning	Simulation software Tools: Agent based Modelling	Bias and fairness in data and algorithms	simulating clinical reasoning processes and analysing patient data
S-13	SLO-1	Cognitive computing Technologies	Language	Cognitive Architecture Software	Privacy concerns and regulatory frameworks	Cognitive Decision Making
	SLO-2	Cognitive Science of Information Processing	Vision	ACT-R and Soar		Future of cognitive Science
8-14-15	SLO-1 SLO-2	Information Processing using	Lab 6: Implement Knowledgerepresentation using predicate logics	Lab9: Explore the roles that metadata play in decision making, memory retrievals, and learning.	Lab 12: Case Study on Ethical, Fairness and Privacy considerations in Cognitive Science	Lab15:Time Series Analysis in health care domain

Learning	 Neil Stillings, Steven E. Weisler, Christopher H. Chase and Mark H. Feinstein, "Cognitive Science: An Introduction" MITPress. Vijay V Raghavan, Venkat N.Gudivada, VenuGovindaraju, C.R. Rao, CognitiveComputing: Theory and Applications: (Handbook of Statistics 35), Elsevier publications, 2016 	Sciences", TheMITPress, 1999.
----------	--	-------------------------------

Learning A	Assessment														
	Bloom's Continuous Learning Assessment (50% weightage)										Final Examination				
Level Level of		CLA	- 1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA – 4	(10%)#		(50% weightag				
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Theory Practice		Practice		Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%		15%	15%			
Level I	Understand	2070	2070	1.3 70	1.5 %	1370	1370	1370	1370		1,5 %	1370			
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%		20%	20%			
Level 2	Analyze	2070	2070	2070	20%	20%	20%	2070	2076		2070	2070			
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%		15%	15%			
Level 5	Create	10%	1070	1.3 70	1.5 %	1370	1370	1.5 70	1370		1,5 %	1370			
	Total	1	100 % 100 % 100 %				%		100) %					

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr S Uma Shankari , Associate Professor, SRMIST, RMP

Course Code	PGI20G06J	Course Name	Building GPT Powered I	Business Applications	Cour Categ		G		$\begin{array}{c c} \text{GENERIC ELECTIVE COURSE} & \begin{array}{c} \text{L} & \text{T} \\ \hline 3 & 0 \end{array}$						P 2	С 4						
Pre-req Course (nt Compu	Co-requisite Courses Nil uter Science and Applications	Data Book / Codes/Standard	C	ogres ours	sive	Nil														
Course I (CLR):	earning Rationale	The pu	rpose of learning this course is to,		L	earni	ing				Pro	ograr	n Le	arniı	ng O	outco	mes	(PL	0)			
CLR-1 :	Learn the aspects re	elated to Cha	tGPT, Capabilities, advancements an	d future of ChatGPT.	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-4:	Techniques. Conceive the conce Identify and acquir	ept of Prompt e knowledge	ge Processing functionalities, Part of S t Engineering, LLM and advanced tec in AI Chatbot, Copilot and Role of A Applications like Blog Writing, Text C	hniques for text generation, I in Image Generation	of Thinking (Bloom)	Expected Proficiency (%)	ed Attainment (%)	Dundomontol K norrhodzo	tion of Concepts	with Related Disciplines	ıral Knowledge	Specialization	to Utilize Knowledge	1 Modeling	e, Interpret Data	Investigative Skills	n Solving Skills	Communication Skills	cal Skills	Skills	ional Behavior	Life Long Learning
Course I (CLO):	earning Outcome	s At the	end of this course, learners will be a	able to:	Level o	Expecto	Expected	aopang	Application of	Link wi	Procedural	Skills in	Ability	Skills in	Analyze,	Investig	Problem	Commu	Analytical	ICT Ski	Professional	Life Lo
CLO-1:	Acquire the basics	of ChatGPT,	, Capabilities, advancements and futur	e of ChatGPT	2	85		I		Μ	-	М	М	-	-	M	-	-	M	-	-	-
			Language Processing functionalities,		3	85	80	N	1 H	Н	-	-	Н	-	-	Μ	-	-	М	-	-	-
			les in Prompt Engineering	-	3	85	80	-	Η	Н	Н	Н	Н	-	М	М	-	-	Н	-	-	-
CLO-4:	To gain knowledge	in AI Chatb	ot, Copilot and AI in Image Generation	n	3	85	80	-	Η	Η	Η	Μ	Η	-	Μ	Μ	-	-	Η	-	-	-
CLO-5:	Apply knowledge i	n developing	g GPT Powered Applications		3	85	80	-	Η	Η	Η	Η	Η	-	-	Μ	Η	-	Η	-	-	-

Duratio	on (hour)	15	15	15	15	15
S-1	SLO-1	ChatGPT Definition, Introduction to ChatGPT	Named entity recognition (NER) techniques	Introduction to Prompt Engineering – The Five Principles of Prompting	Introduction to AI Chatbot	Building GPT Powered Applications
	SLO-2	Understanding the capabilities of ChatGPT		Introduction to Large Language Models for Text Generation	Tasks in NLP	AI Blog Writing
S-2	SLO-1	Using ChatGPT	N-grams language models	Standard Practices for Text Generation with ChatGPT	Types of AI Chatbots	Torio Dessent
		Advancements and future of GPT Models	Markov chains and Hidden Markov Models	Advanced Techniques for Text Generation with LangChain	Challenges ahead	Topic Research
S-3	SLO-1	Introduction to OpenAI	8 1 8 8	Vector Databases with FAISS and Pinecone	Working of AI Chatbots	Francest Internations
50	SLO-2	OpenAI Playground		Autonomous Agents with Memory and Tools	Role of AI Tools in programming	Expert Interview

S-4-5	SLO-1	Lab 1: Case Study on NLP		Lab 7: Experimenting with		Lab 13: Build a website using Gen
5-4-5	SLO-2	Tool	Lab 4: Word2Vec Exploration	Prompts	Lab 10: Simple Chatbot	AI Tools
~ .	SLO-1	Large Language Models(LLM)	Supervised learning for text classification	Introduction to Diffusion Models for Image Generation	Copilot by Github	
S-6	SLO-2	Introduction to Natural Language Processing (NLP) - Overview of NLP	Naive Bayes	Challenges ahead	Working of copilot	Generate Outline
6 7	SLO-1	History, and Applications	Decision Trees	Limitations of Prompt Engineering	Copilot Compatibility	
S-7	SLO-2	Advantages and Disadvantages	Support Vector Machines (SVMs),	Future Directions and Emerging	Merits and Demerits of Copilot	Text Generation
S-8	SLO-1	Challenges in NLP	Feature engineering for text data	Trends in Prompt Engineering	Converting comments to code using copilot	Writing Style
	SLO-2	Text preprocessing techniques	Evaluation metrics for text classification	Best Practices	Auto filling repetitive code	
S-9-10	SLO-1 SLO-2	Lab 2:. Case Study on GPT	Lab 5: Applying Tokenization Techniques on text samples	Lab 8:.Working Functionality of GPT-3	I I I I I I I I I I I I I I I I I I I	Lab 14: Gen AI with Custom Dataset
S	SLO-1	Word Representations -	Types of sentiment analysis	Define GPT in academic perspective	Running tests using copilot	
11	SLO-2	Lexical Analysis – Introduction	Lexicon-based and machine learning approaches	Importance and Use Cases of GPT	Navigating unfamiliar territory with copilot	Title Optimization
S-12	SLO-1	Tokenization	Evaluation of sentiment analysis models	History of GPT	Creating an application with copilot	
5-12	SLO-2	stemming	Introduction to word embeddings (Word2Vec, GloVe)	Risks and Limitations of GPT	Comparison of ChatGPT, Bard, LLAMA, Claude	AI Blog Images
	SLO-1	lemmatization	Transformers and their applications in NLP	Working of GPT	Role of AI in Image Generation	
S-13	SLO-2	Part-of-speech tagging	Language generation and chatbots Introduction to neural networks for NLP	Realtime Examples of GPT	AI Tools for Image Generation	User Interface
S-14-15	SLO-1	Lab 3: Case Study on Prompt	Lab 6: Case Study on ChatGPT	Lab 9: Experimenting Naïve	Lab 12: Working of CDT 4	Lab 15: Working of
5 14 15	SLO-2	Engineering	API	Lab 12: Working of GPT-4	Conversational AI	

	1 Lane, H., & Hapke, H. (2019). Natural Language Processing in Action: Understanding, Analyzing, and Generating	
Learning	Text with Python. Manning Publications.	1. Steven Bird, Ewan Klein and Edward Loper."Natural Language Processing
Resources		with Python", O'REILLY Publication.
	3. Olivier Caelen & Marie-Alice Blete, "Developing APPS with GPT-4 and ChatGPT", O'REILLY Publication.	

Learning A	Assessment												
	Bloom's Continuous Learning Assessment (50% weightage)										Final Exa	mination	
Level Level of		CLA	- 1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA – 4	(10%)#	(50% weightage)			
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Theory Practice		Theory	Practice	
Loval 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%		15%	15%	
Level 1	Understand	20%	20%	1370	1370	1370	13%	13%	13%		13%	13%	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%		20%	20%	
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070		2070	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%		15%	15%	
Level 5	Create	1070	1070	1.3 70	1.5 %	1.3 70	1.5 %	1.5 70	1370		1 J 70	1370	
	Total	100 % 100 % 100 % 100 %				%		100 %					

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr SUBBAIAH, Associate Professor, SRMIST, RMP

																	Ι	T	P		С
Course Code	PGI20G07J	Course Name		h Care Generative AI (Lab: Google erative AI Studio)	Cours Catego		D		Discipline Elective Course						3	3 0	2		4		
Pre-requi Course Course Of	site s Nil fering Departmer	nt Comp	Co-requisite Courses uter Science and Application		CO	gressi urse	ve 5 Nil														
Course Le (CLR):	arning Rationale	The p	rpose of learning this cour	rse is to,	Lea	arnir	g				Prog	ram]	Learn	ning (Outc	omes	s (PL	0)			
CLR-1 : In	troduce the fundation	mentals of C	Generative AI		1	2	3	1	2	3	4 5	5 6	7	8	9	10	11	12	13 1	4	5
CLR-2 : U	nderstand the appl	ications of	Generative AI		n)		•					Jore	è								
CLR-3 : U	nderstand the Poli	cy Generati	ons of Generative AI		(Bloom)	6	t ()	dge	ots		e.	wled		ta		s					
CLR-4 : U	nderstand the Aut	onomous G	eneration of Generative AI		<u> </u>	ncy	Jen	wlee	leo		edg			Data		Skills	Skills			lor	50
CLR-5 : U	nderstand the Hea	lth care Pol	icies of Generative AI		Thinking	Proficiency (%)	Attainment (%)	Čn o	Concepts	ted		opecialization o Utilize Know	ing	Interpret	kills	ıg S	n Sl	s		ena	Learning
L					luid	Prof	Atta	al F	of	Rela	Ϋ́		del	terl	e S	lvir	atio	Skil	-	ll B(.ear
Course Le (CLO):	arning Outcomes	At the	end of this course, learner	s will be able to:	Level of T	Expected I	Expected /	Fundamental Knowledge	Application	Link with Related	p :	Ability to Utilize Knowledge	Skills in Modeling	Analyze, In	Investigative Skills	Problem Solving	Communication	Analytical Skills	ICT Skills	essioi	Life Long I
CLO-1 : R	ecognize basics of	Generative	AI		2		80	L	-	-		-	-	-	Μ	-	-	-	- 1	-	-
CLO-2 : A	pply concepts in C	Generative A	AI		3	85	80	Μ	Н	Н		-	-	-	Μ	-	-	-	-	-	-
CLO-3 : Id	lentify the Policy (Generations	of Generative AI		3	85	5 80 - H H H H M M				-	-	-								
			ration of Generative AI		3	85	35 80 H H M M M				-	-	_								
CLO-5 : E	mploy techniques	in Health ca	re Policies of Generative Al	[3	85	80 H H H M H				- -	-									

_	uration (hour)	15	15	15	15	15
S- :	SLO-1 SLO-2		Personalization and Adaptability in AI- Generated Content	best practices for using generative AI	Autonomous Generative AI	Contextual Awareness
S-2	2 SLO-1 SLO-2		Generative AI Models: RNNs, Ensuring Quality and Reliability in AI- Is, GPT, and More Generated Content		Generative AL-Augmented Apps and	Content Generation Role of Generative AI in Managing Administrative Process in Healthcare
S-:	SLO-1 SLO-2	Variational Autoencoders (VAEs)	Contextual AI and Memory Mechanism	Tech providers in the generative AI market		Assistive Healthcare Interactive Chatbots

S-4-5		Lab -Test models using prompt	Lab - Google AI Studio quickstart	—	Lab - Build a product copy	Lab - Case Study I
5-4-5	SLO-2	samples.		generation	generator	Lab - Case Study I
S-6	SLO-1	Generative Adversarial Networks	The Convergence of Human and AI	Artificial general intelligence	Understanding Advanced Multimodal Generative AI	Madiaal Imaging
5-0	SLO-2	(GANs)	Creativity		Generative AI	Medical Imaging
S-7	SLO-1	Transformers		Role of generative AI tools in various industries	Fusion Module	Drug Discovery and Development
5-7	SLO-2	mansionners	AI-Driven Economy	industries		Drug Discovery and Development
S-8	SLO-1		Benefits and applications of Generative Generative AI tools and Platforms		Input Module, Output Module	Personalized Medicine
5-0	SLO-2	(RBMs	л			
S-9-		Ũ	Lab - Writing scripts with Gemini AI		Lab - Build a custom chat application	Lab - Case Study II
10	SLO-2	prompts.	AI	inages	аррисацон	Lab - Case Study II
s	SLO-1		The risks of generative AI	ChatGPT, Scribe	Multimodal Inputs,	Challenges of Generative AI in
11	SLO-2	Popular Use Cases for Generative AI				Healthcare Industry
G 10	SLO-1	Enhancing Creativity and Diversity in	Practical uses of generative AI	Alpha Code, GitHub Copilot	Cross-Modal Understanding	
S-12	SLO-2	AI-Generated Content	-			Ethical Considerations
S-13	SLO-1			GPT-4	Single-Modal Vs Multi-Modal	Future of generative AI
5-15		Thoughtful Prompt Engineering	Business			
S-14-	SLO-1	-	Lab -Creating text prompts with	Lab - Universal speech model	Lab - Experiment with model	
15	SLO-2	speech-to-text.	Google AI Studio and Gemini AI	*	parameters	Lab - Case Study III

	Impromptu: Amplifying Our Humanity Through AI,Reid Hoffman is a co-founder of LinkedIn, an investor at venture
	firm Greylock Partners, and a former board member of OpenAI.Publish Date: March 15, 2023
	Rebooting AI: Building Artificial Intelligence We Can Trust., Gary Marcus and Ernest Davis, both professors at New
Learning	York University. Marcus is a professor emeritus of psychology and neural science, and Davis is a professor of computer
Resources	science.Publish Date: September 10, 2019
	Exploring the Advanced Multi-Modal Generative AI - Analytics Vidhya
	Generative AI in healthcare: Emerging use for care McKinsey

Learning A	Assessment												
	Bloom's Continuous Learning Assessment (50% weightage)											amination	
Level	Level of	CLA	- 1 (10%)	CLA –	2 (10%)	CLA	- 3 (20%)	CLA – 4	(10%)#		(50% we	eightage)	
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%		15%	15%	
Level I	Understand	20%	2070	1.3 70	1370	1370	1370	1370	1370		1370	1370	
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%		20%	20%	
	Analyze	2070	2070	2070	2070	2070	2070	2070	2070		2070	2070	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%		15%	15%	
Level 5	Create	10%	1070	1570	1370	1570	1370	1570	1370		1370	1570	
	Total 100 % 100 % 100 %				00 %	100	%		100 %				

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr.JothiPeriasamy, Founder/Chief Data Scientist, DeepSphere.AI,2 Venture Drive, #13-26 Vision Exchange, Singapore, 608526	Dr.S. Gopinathan, Professor and Head, Department of Computer Science, University of Madras, Guindy Campus, Chennai – 600 025	Dr. V. Saravanan. SRMIST, RMP

Course Code	PGI20AE3	8T	Course Name	Career Ad	vancement –	III	ourse tegory		AE			Abi	lity E	nhano	cemer	nt Cou	urse			_	L 7. 3 (Г I 0 (C 3
Pre-requisite Cou	rses	Nil		Co-requisite Courses	Nil			I	Progre	essive C	ourse	es	N	lil										
Course Offering I	Department		Career Guidanc	e and Development	Data Book	/ Codes/Standards		r	Nil															
Course Learning (CLR):	g Rationale	Th	e purpose of lear	ming this course is to,			Lea	arni	ng				Pro	ograi	n Le	arni	ng O	utco	mes	(PL	0)			
CLR-1 : To put in	use the basic	mecha	nics of Grammar.				1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-3 : To test th CLR-4 : To interp CLR-5 : To instill placement	icators ne vocabulary p pret and analyz l confidence in nts learners develo	power e texts studen op voca	and skill to follow nts and develop ski abulary of a genera	at they become effective and the logic of sentences ills necessary to face the cha I kind by developing their re Durse, learners will be ab	illenges of co		evel of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	H Fundamental Knowledge	Application of Concepts	Link with Related Disciplines	Procedural Knowledge	Skills in Specialization	Ability to Utilize Knowledge	Skills in Modeling	Analyze, Interpret Data	investigative Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ICT Skills	Professional Behavior	Life Long Learning
CLO-1 : To under	rstand the diffe	erent pa	arts of speech and	use them in sentences appro	priately		3	80	70	H	H		H	L	M	-	H	-	H	-	1	M		H
	rstand correct u	-	=		- •		3	80	75	Μ	Н	М	Н	-	М	-	Н	-	Н	-	Н	М	-	Н
CLO-3 : To acqui	re satisfactory	compe	etency in use of Ve	erbal Reasoning			3	85	70	Μ	Н	Μ	Н	-	М	-	Н	-	Н	-	Н	М	-	Н
CLO-5 : To devel	op comprehen	sion ar	nd interpretation sk		of correct Vo	ocabulary & Grammar.	3 3	85 85	80 75	M M	H H	М	H H	-	M M	-	H H	-	H H	-	Н	M M	-	H H
CLO-6: To help t	the students su	cceed	in competitive exa	ms and placements			3	80	70	М	Н	М	Η	-	М	-	Н	Η	М	-	Н	М	-	Н
Duration (hour)		9		9		9							9								9			

Dura	tion (hour)	9	9	9	9	9
S-1	SLO-1	Parts of Speech	Synonyms	Sentence improvement	Sentence completion (Vocabulary based)	Para Jumble/ Anagram
	SLO-2	Parts of speech -Practice	Synonyms Practice			Sentence Anagram
S-2	SLO-1	Modal verbs	Antonyms S		Sentence completion (Vocabulary based) - Practice	Anagrams - Practice
	SLO-2	Uses of Modal Verbs	Antonyms Practice			Cloze Passage
S-3	SLO-1	Types of Modal Verbs	Idioms		Sentence completion (Vocabulary based - Practice	Cloze Passage – Techniques to solve

	SLO-2	Modal Verbs- Assessment	Idioms – Practice			cloze passage-Practice
S-4	SLO-1	Spotting Errors	Idioms - Assessment	Sentence Correction-Practice	Odd word	Word analogy
~ -	SLO-2	Error spotting based on Parts of Speech	Phrasal Verbs			Analogies – Types of Relationship
	SLO-1	Errors how to avoid in Nouns & Pronouns	Phrasal verbs - Assessment	Sentence completion (Grammar based)		Analogies – Types of Relationship
S-5	SLO-2	Common Errors: Subject - verb Agreement		Sentence completion-Practice	Odd word-Practice	Word analogy - Practice
S-6	SLO-1	Subject- verb Agreement - Practice	one word substitution	Sentence completion-Practice	Words often confused	Techniques of Effective Reading
	SLO-2	Usage of Articles (a, an, the) One Word Substitution - Critical Reasoning and Verbal Practice deduction			Kinds of Reading	
S-7	SLO-1	Common mistakes with Prepositions	Homophones	Types of Critical Reasoning	Words often confused-Practice	Reading Comprehension – Unseen
	SLO-2	Prepositional Errors - Practice	Homophones-Practice			Passages
S-8	SLO-1	Change of Speech	Homonym	Critical Reasoning – Level 1	Words often misused	Reading comprehension - Practice
~ ~	SLO-2	Change of Speech - Practice	Homonym-Practice	Critical Reasoning – Intermediate Level		
S-9	SLO-1	Change of Voice	Homographs	Critical Reasoning – Advanced Level	Words often misused-Practice	Reading comprehension- Practice
~ '	SLO-2	Change of voice - assessment	Homographs - Practice	Practice Session		

Resources	Bhatnagar R P, English for Competitive Examinations, Trinity Press, 2016. . <u>S Aggawal, Obj</u> ective General English,S.Chand Limited, 2018

Le	arning Assessment				
Level Level 1			Continuous Learning Ass	essment (100% weightage)	
Level	Bloom's Level of Thinking	CLA-1 (20%)	CLA-2 (20%)	CLA-3 (30%)	CLA-4 (30%) ##
		Theory	Theory	Theory	Theory
Level 1	Remember	10%	10%	30%	15%
	Understand				
Level 2	Apply	50%	50%	40%	50%
	Analyze				
level 3	Evaluate	40%	40%	30%	35%
	Create				
	Total	100 %	100 %	100 %	100 %

#CLA-1, CLA-2 and CLA-3 can be from any combination of these: Online Aptitude Tests, Classroom Activities, Case Studies, Poster Presentations, Power-point Presentations, MiniTalks, Group Discussions, Mock interviews, etc.

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
	Dr. G. Saravana Prabu, Asst. Professor, Department of English,	Mrs.Deepalakshmi, Assistant Professor, Department of Career Guidance Cell, FSH, SRMIST Dr. Muthu Deepa M, Assistant Professor, Department of Career Guidance Cell, FSH, SRMIST

SEMESTER IV

Course	Code	PGI20P03L	Course Name	Proj			Project Work, Internship In Industry / Higher Technical Institutions				tions		L 0	Т 0	P 24	C 12							
Pre-rec	uisite (Courses Nil		Co-requisite Courses	Nil				Prog	ressive	Cour	ses	Ni	1									
Course Of	fering I	Department	Computer Applic	cations	Data Book / Codes/Stand	dards									N	lil							
Course Le	arning	Rationale (CLR)	: I	he purpose of learning th	s course is to:		Lea	rninş	g				Pr	ogra	m Le	earning	; Out	comes	s (PL	0)			
CLR-1 :	To und	erstand the basics	of software develop	oment			1	2	3	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15
CLR-1 : To understand the basics of software development CLR-2 : To know about life cycle of the software development CLR-3 : To explore risk and people management for software development CLR-4 : To learn about different software tools for software development. CLR-5 : To know about different techniques related to software development. CLR-6 : To Learn About documentation process for software development				el of Thinking (Bloom)	Expected Proficiency (%)	Expected Attainment (%)	Fundamental Knowledge	Application of Concepts	k with Related	Procedural Knowledge	lls in Specialization	Ability to Utilize Knowledge	Skills in Modeling	tive Skills	Problem Solving Skills	Communication Skills	Analytical Skills	ſ Skills	Professional Behavior	e Long Learning			
	-	Outcomes (CLO)		At the end of this course, le	arners will be able to:		Lev	ExJ				Link		Skills					Co	7	ICT	\mathbf{Pr}_{0}	Life
CLO-1 :	1		idea / technique in	1			3	80	70	Н	Η	Μ	Η	L	Μ	- F		Н	-	Η	Μ		Η
CLO-2 :			i-disciplinary envir				3	80	75	Μ	Н	Μ	Η	-	М	- H	[-	Η	-	Н	М		Η
CLO-3 :	To und	lerstand the manag	ement techniques o	f implementing a project			3	85	70	М	Н	М	Н	-	М	- H	[-	Н	-	Н	М	-	Н
CLO-4 :	To exp	erience on the cha	llenges of teamwor	k			3	85	80	Μ	Н	М	Η	-	М	- H	[-	Н	-	Н	Μ	-	Η
CLO-5 :	To prep	pare a presentation	in a professional n	nanner			3	85	75	Μ	Η	Μ	Η	-	М	- H	- 1	Н	-	Н	Μ	-	Η
CLO-6 :	To prep	pare document all	aspects of design w	ork.			3	80	70	М	Н	М	Н	-	М	- H	I H	М	-	Н	М	-	Н

Students can choose problems of their own interest to develop software package using the programming languages/tools available. There will be two reviews conducted during the project period for all the students. At the end of the project, every student shall submit a structured project report and will take a Viva Voce examination.

Learning Assessment												
	Continuous Learning Asse	essment (50% weightage)	Final Evaluation (50% weightage)									
Project Work	Review – 1	Review – 2	Drugia and Drug and	Viva-Voce								
	20%	30 %	30 %	20 %								